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ORIGINAL ARTICLE

Quantum computation as trajectory monitoring
requires only one qubit in answer register in

quantum phase estimation

Teturo Itami*, Nobuyuki Matsui, Teijiro Isokawa

Graduate School of Engineering, University of Hyogo, Hyogo, Japan

Abstract

Quantum computation scheme developed using classical apparatuses has
been extended to systems with two qubits. To obtain controlled NOT
operation, we set an interaction between two bits, control bit and tar-
get bit, with an oscillation on the target bit. Condition of controlled
NOT operation simultaneously determines the operation time, interac-
tion strength and oscillation magnitude. Subsequently, we demonstrate
that, in quantum phase estimation algorithm, our system — with only
one qubit in answer register — requires no iteration. Classical mechani-
cal systems we apply do not share the same vulnerabilities as quantum
systems. Moreover, our system does not require numerous measurements
to determine most probable value of the system output. These features
provide compelling advantages for such computational systems.
Contribution of the Paper: Our work shows a concrete method to ob-
tain controlled NOT operation between two qubits. The result provides a
method for assembling classical apparatuses to construct universal gates
in quantum computers.
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Nomenclature WR

AV time dependent perturbation

frequency parameter of time dependent perturba-
tion AV

wave function

AVy  perturbation to generate Hadamard gate operation

0 parametrization of A

|D)  the first excited state

€ strength of interaction V"

|U) the lowest energy state

ac strength of time dependent perturbation AV

A eigen value
H
Cy controlled unitary gate 0
Hp
CNOT controlled NOT gate
H Hadamard gate
m
Pe phase gate
nacn
U unitary matrix
nevn
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free Hamiltonian

system parameter corresponding to Planck’s con-
stant

mass of a particle or strength of control input cost
integer to determine ac

even integer to determine TcnoT and e

odd integer to determine TcnoT and &

half width of wall potential
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Ty operating time of Hadamard gate
TcnvoTt operating time of controlled NOT gate
U feedback input
\% potential or control cost function
Vint  interaction between two qubits

Vo wall potential height

x state variable
*C operation on control bit
*T operation on target bit

1. INTRODUCTION

The development of quantum computers, which are ca-
pable of performing computations significantly faster than
conventional classical computers, is accelerating rapidly.
Calculations are usually iterative processes. We expect
that the number of iterations can be significantly reduced
[1] by utilizing the characteristics of “quantum.” However,
this quantumness introduces two primary challenges. The
first is the fragility of quantum systems. Measurement de-
stroys quantum superposition owing to “back-action.” The
second problem is that the system is essentially probabilis-
tic. Obtaining definite numerical results requires multiple
measurements.

On the contrary, classical systems are robust. We en-
counter no back-action in controlling classical systems. Def-
inite value is obtained in only one measurement. Thus,
if quantum computers using classical apparatuses are re-
alized, they are positioned as one of breakthroughs to-
wards scalable quantum computer. We have analyzed such
systems for one qubit [2, 3, 4, 5, 6]. Specifically, two
points have been emphasized. The first is that quantum
computer with classical apparatuses allows to use macro-
scopic phenomenological laws, as provided by state equa-
tion, Eq.(1) in Section 3 in this paper. Secondly, feedback
with equal time input-output relation, Eq.(3) in the Sec-
tion 3 in this paper, provides classical systems quantum be-
havior. Therefore, monitoring the trajectory of the state x
provides information on the weighting factor of eigenstates
in quantum superposition, of the systems.

However, the former researches [2, 3, 4, 5, 6] on quan-
tum computation using classical apparatuses are restricted
to phase gate P, and Hadamard gate H for one qubit.
It is known [1] that arbitrary gates used for computa-
tion are constructed from elementary gates, such as Py,
H, and controlled NOT(CNOT). In this paper, to con-
struct this CNOT gate, results of the former researches
are extended to systems with two qubits. Subsequently, a
scheme of quantum phase estimation with only one qubit
in AnswerRegister is clarified. In terms of actual hardware,

our N-bit computer consists of the same N control sys-
tems. This report is positioned as a simulation of such a
hardware system.

The remainder of this paper is organized as follows.
Section 2 presents a brief historical overview of quantum
computation. In Section 3, a use of classical apparatuses
in quantum computing is reviewed. Based on the formu-
lation, we first demonstrate the construction of universal
gates in Section 4. Subsequently in Section 5, we illustrate
with an example that a significant reduction in qubit num-
ber in quantum phase estimation algorithm is achieved.
Summary and discussion are presented in Section 6.

2. BACKGROUND

In verifying “many-world interpretation” of quantum
mechanics, Deutsch [7, 8] found that it is possible to use su-
perposition principle in calculation process. Subsequently,
it has become a common understanding among computer
science researchers that with just 50 qubits, “quantum com-
putation” can approach the memory capacity of a super-
computer according to “Moore law” [1]. In quantum na-
ture, various qubits develop in time, such that they are
correlated or entangled. The most important feature of
quantum superposition is conducted by the entanglement.
Algorithms that fully use the superposition principle were
typically developed by Shor [9, 10] and Grover [11, 12].
Quantum transcendence has been demonstrated on hard-
ware [13], and various algorithms [14] have been continu-
ously proposed and are being demonstrated in response.

However, quantum systems are fragile. Error cor-
rection in quantum computation is necessary. To ensure
fault-tolerance, the vulnerability requires unrealistic num-
bers of qubits [15, 16]. For example, there are studies
that estimate that prime factorization of a number with
2048 bits requires 20 million or 6 billion qubits [17, 18, 19].
The practical construction of quantum computer hardware
presents substantial challenges due to peripheral system re-
quirements.

In a gated quantum computer utilizing binary spin quan-
tization, the logic of quantum linear superposition is highly
vulnerable to disruption by thermal noise. Operation is
only possible under extremely low-temperature conditions.
We need large-scale cooling apparatus around it. Quantum
computers that use light do not require an extremely low
temperature environment. However, light travels straight.
It is challenging to integrate such a system onto a small-
scale chip. However, for this light type, it was recently re-
ported that researchers successfully developed fault-tolerant
quantum computer [20]. In the situation described above,
we expect a concept “NISQ” (Noisy Intermediate-Scale Quan-
tum) [21, 22, 23] with at most ~100 qubits. For exam-
ple, Google’s random quantum circuit sampling [13] has
revealed certainty of quantum supremacy and existence of
hardware with 53-qubits.

Researchers across various fields are beginning to make
full-scale use of “quantum” to accelerate computation. The
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calculations are conducted on conventional computers. How-
ever, many algorithms are developed especially for NISQ
quantum hardware. In Al(artificial intelligence) technolo-
gies, algorithm by Harrow, Hassidim and Lloyd [24] that
is used in linear equations solver [25, 26, 27], optimization
[28, 29, 30] by Grover [11, 12] and quantum circuit learning
[31] are tried. Appropriately setting initial wave function
[32] is important in quantum phase estimation, especially
in quantum chemistry. To determine ground state of quan-
tum many-body systems, variational quantum eigensolver
algorithm [33] is employed. In addition, further applica-
tions are emerging — one example is the quantum simula-
tor studied in [34]. However, “scalable fault-tolerant quan-
tum computer” remains a goal among quantum computer
researchers.

3. QUANTUM COMPUTATION AS TRA-
JECTORY MONITORING

For simplicity, one dimensional system is selected for
analysis. We wrote “for simplicity.” However, if we can
find one dimensional state variable as a suitable candidate
of quantum computation, the state equation Eq.(1) is not
merely written for simplicity; rather, it accurately repre-
sents the behavior of the real world. Mass point moving in
one dimension in Newton mechanics is one of examples of
such real world. Furthermore, temperature control systems
can be described by Eq.(1):

&= g(x)u+ F(x). (1)

With g(x) =1 and F(z) = 0, Eq.(1) describes mass point
moving in a straight line in one dimension, where x repre-
sents linear coordinate and u is the velocity of the point.
In addition, Eq.(1) can describe a temperature control sys-
tem, where x represents temperature, u is the flow rate,
g(z) is the combustion rate, and F'(x) is the heat dissi-
pation. The control specification requires minimizing the
time integration of difference L(z,u) = Zu? — V(x) which
accounts for the costs of manipulation, %ug, and control
errors, V(z). Consider state equation Eq.(1) as constraint,
and introduce a new dynamical variable y corresponding to
the constraint. These conditions enable us to express the
system in terms of minizing time integral of the sum of L
and p-(g(z)u+ F(x)—). Dirac’s recipe [35] of constrained
dynamics demonstrates how to quantize the system to fi-
nally obtain quantum mechanical wave equation [36, 37],

— 2
N Hg? (0
H —_— = —_—— J—
Ry om Yoz v
+Vi —iHRpF QUJ (2)
R O )
with a definition wo = £7£2<  In Eq.(2), Hg is a design
constant that characterizes amplitude of quantum fluctu-

ation of the system. Tunneling phenomena are not rare
in classical when appropriately shaped. Passing through a

153

potential barrier is only a deviation from the control spec-
ification, given by V(z), which is commonly observed in
control process. Setting g =1, F =0 and Hgy(=h = %),
Planck’s constant h = 6.62607015 x 107341 provides the
conventional Newton mechanics and quantum mechanics,
Schrodinger equation, of mass particle. The use of a po-

lar coordinate representation, v = |z/)|e“%, allows us to
express the fluctuation in a form of a potential V9[|]
[38, 39, 40]. With V + V7 instead of V, we finally obtain
a generalized Hamilton-Jacobi equation for value function
S, from which a feedback law,

_ 908 _gPHR¥ G — 0%
U=-=—= "= (3)
]2
is calculated. Notice the existence of |¢|? that can disap-
pear in the denominator of Eq.(3). However, at least intu-
itively, it does not pose any difficulties. No particle reaches
such point, because [)(x;t)|? is the probability that the
particle exists at point = at time ¢. Detailed mathematical
analysis on this point has been conducted [41].

The aforementioned framework can be adopted to var-
ious quantum systems, by the designer’s discretion. In the
following, we select one dimensional mass particle under
wall potential V(x), with height V4, width 2S.

m Ox 2im

4. CONSTRUCTING TWO-QUBITS
GATES FOR UNIVERSAL GATES

First, we provide a brief review of the construction of
the phase gate P4 and Hadamard gate H for a single qubit
[3]. Subsequently, CNOT gate for two qubits is defined.

Let Hy be a free Hamiltonian, Hy = mT“2 + V(x).
Eigenstates |U) and |D) are characterized by Hogpx (x) =
Exo¢x(z) (X = {U, D}), with eigen energy Fx and eigen
function ¢x (x). We correspond the lowest energy state to
U and the first excited state to D. Although we do not
focus on spin systems, U figuratively indicates up spin and
D indicates down spin. In the following, we proceed cal-
culation by neglecting the effects of excitation to higher
energy states.

4.1.

Free time development provides a phase gate. Initial
wave function ¢¥(0) = a|U) + 5 |D) develops in time freely
into

Phase gate Py and Hadamard gate H for one qubit

,EUT

W(Ty) = 5T (o |U) + ¢ T 3| DY),

(4)
where Py gate with

_Ep—Ey

= T.
¢ Hp (03]

()

n this paper, we apply MKS unit.
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is realized. In Hadamard gate H, operation is performed

during the period Ty when an appropriate perturbation

[3] AV (x) works. The system evolves with time, reaching
its state at t =Ty

a+p a—p

a|lU)y+B|D)— ———|U) +

U)+81D) = 22 0y + 2

4.2. Controlled NOT gate CNOT for two qubits

Now, let us discuss two qubits. We extend the results
in the former researches on one qubit to provide concrete
formulation for constructing CNOT gate for two qubits. As-
sume we prepare a system with two qubits

D) - (6)

¥(0) = a|UU) + B|UD) +~|DU) + 6 |DD), (7)

where we call the first qubit control bit and the second
target bit. Consider a unitary matrix

Uir Ur
U= . 8
|:U21 Uzz} ®)

Controlled unitary operation Cy makes initial wave 1 (0)
develop in time to provide

Q o
B B
= =C .
5 U1y + Ua2é
Assuming
10 1
sox=[0 1] "

Cy provides controlled NOT gate, one of the universal
gates, CNOT = Cx. This CNOT works in a way that the
target bit grarget converted from |U) to |D) or |D) to |U)
only if the control bit qoontror 18 |D). It is not an easy
task to find candidate physical systems that work in such
a convenient way. To provied CNOT, we introduce an in-
teraction between two qubits
Vint (xControlv xTarget) =
€ X p(zControl) X p(xTarget)a

(11)

where p(z) is an even function in z. Simultaneously, on
the target bit, we set a time dependent perturbation,

AVr(ajTarget 3 t)

ac - cos(wrt) - (—iHRaxTa) )
arget

In Eq.(12), ac and wg are determined by Eq.(20) and
Eq.(14), respectively.

Let the initial wave function be expressed as Eq.(7).
The condition that CNOT gate operation is performed at
time TcnoT,

Y(Tenot) =

(12)

a|UU) + B|UD)

+5|DU) +~|DD), (13)

provides values of the parameters ¢ Cac Cwg. Let us de-
fine Ex = (X| Ho |X), px = (X|p(X)|X) for X = U, D,
AFE = Ep — EU, Ap = pp — puU, Hpwx = AFE + prA}%
Xuap = fd,ubU(x)%qu(x) and Q = acXygp. When we
assume

WR = Wp, (14)

time integration of Schrodinger equation is an exercise of-
ten shown in the elementary textbooks. We obtain

EyuTenoT
Y(Tenot) = e Fr o «a|UU)
EupTcnot
+e~ r  B|UD)
QT QT
+(7ycos —NOT _ 5sin CQNOT)
EpuTenot
e “r  |DU)
QT QT
+(y sin —NOT 4§ cos ——SNOT)
Epp Tenot
e “r  |DD).

(15)

The wave function Eq.(15) becomes the same as that Eq.(13)
except a common phase —&’?{77}?“‘”, when we assume

QTenoT

i -1, 16

sin — (16)
(BEyu —Fyp)Tenot

e HR =1, (17)
(Epp—Eyup)Tcnot

e Hp =—1. (18)

With integer n4., and even/odd integer neyn /Modd, param-
eters

7THR (nevnpD + nodde)

T = 1
CNOT AEAp ) (19)
B+4-(Ngen — 1)) 1
ac = , 20
“ Xuvap TenoT (20)
€ — (nodd + nevn)AE (21)

- Ap(nevnpD + nodde)
satisfy Egs.(16), (17) and (18).

4.8. Assembling universal gates to give controlled unitary
gate

Combination of these Py, H, CNOT gates allows us to
obtain various gates. Here, we demonstrate a standard
way to assemble universal gates to provide controlled uni-
tary gate, Cy. First, express rotation gates around y, z
axes as Ry (¢) = e 2Pz HP,HP_z, R,(¢) = ¢ 712 P, Sub-
sequently, define A = R,(“57), B = Ry(—o‘Tﬂ)Rz(—g),
C= Rz(g)Ry(w). We can obtain 4 parameters «, 3, v and
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0 to provide an arbitrary unitary matrix U € 2 x 2 in a
form

U = AXBXCPy. (22)

According to Eq.(10) in Eq.(22), we assemble controlled
unitary gate Cy as follows,

Cy = A7 -CNOT - By - CNOT - C1Cp,, (23)

Cp, =Ps -P_s_-CNOT: Ps_,
2 T 2T

c g (24)

6

where the suffices C and T mean that the operation is on
qControl and qTarget, respectively.

Examples are provided in the following. We apply a
system with mass m = 1, wall potential height V5 = 1,
width 25 = 2(S = 1). Quantization constant is chosen as
Hpr = 0.5 to guarantee two-level structure of energy [2].

First, we present an example of the perturbation as
AVy(z) =0 for |z| > S and

_ 2 2 . T
AVy(z) =ap (:E S ) + bp sin 55"

(25)

for |x| < S. The time Ty is calculated as a function of ap

and bp. We can construct H gate by using time dependent

perturbation, AV in Eq.(12), instead of AVy in Eq.(25).
Secondly, we provide CNOT by setting p(r) = 2? in

Eq.(11). Let us randomly assume an initial wave function

Y = 0.45e'8% |UU) 4 0.38¢ 149 |U D)

+0.48¢" 1% | DU) + 0.65¢*™ | DD) (26)
Values neyn, = 100,n09¢ = —101,n4en, = 0 yield ac =
—0.01,e = 0.02,Tcnyor = 341.72 and at t = TenoT,

Y = 0.53¢ 7 UU) +0.25e 29 U D)

+0.65¢" 44" | DU) + 0.48¢ =23 | DD) (27)

that is not a CNOT operation result of Eq.(26). The reason
why we failed to obtain the appropriate result in Eq.(27)
is due to the discrepancy wp = 0.93 and wy = 0.92 being
significantly small, 0.01 of the mean. Thus, we retried to
assume Neypn = 80, Nogqg = —101,m4c, = 0 to obtain larger
difference between wy = 1.07 and wp = 1.36, ratio 0.23 of
the mean. Parameters are calculated as ac = —0.01,e =
O.GQ,TCNOT =233.83. At t= TCNOT we obtain

Y = 0.45e"23|UU) 4 0.38¢ 7208 |U D)

+0.65¢227 | DU) + 0.48¢%5% | DD) (28)

that well approximates CNOT operation result of Eq.(26).

5. QUANTUM PHASE ESTIMATION
Let us consider 258 dimensional unitary matrix

Ue (@275 x 2m5) (20)
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|U_" H 1 1%
|U> H || _yz

|U) m || ¥
[
[U) | Yn
SWAP QFT!
Uy Uo
oy i
mp=qubits

Figure 1: Quantum phase estimation with n qubits to calculate eigen-
value A = €27 in n-th order in Eq.(31). We defined Uy = Ut (k=
0,1,--- ,n— 1), especially Uy = U2 = Ul =u.

Answer Register

ProblemRegister

mB—qublts 1 2 3

Figure 2: Hadamard test circuit.

and assume that we know one of its eigenvectors

b e (2™ x 1). (30)

As shown in Fig.1, quantum phase estimation algorithm
finds the corresponding eigenvalue A = €™ in a form

20 = 1120 + Y22 + Y322 + -+, (31)

where 1, - - ,y, are the output of inverse quantum fourier
transformation QFT 1. It is evident that, in principle, the
conventional algorithm requires infinite number of qubits as
accuracy requirements become increasingly stringent. 2 At
a first glance, a simpler “Hadamard test” circuit shown in
Fig.2 can be used to find the eigenvalue A. In particular, at
time 2, our wave function has information on \ in a register
that we measure to obtain the calculation result. In Fig.2,
we refer to the register as AnswerRegister. A register that
stores the known eigenvector ¢ is called ProblemRegister.
Initial wave function |U) ® ¢ develops in time to W) =

HIU)®y = % ®1p. The unitary matrix U operates on
the state ¥ of the ProblemRegister, only when the state of

2The problem can be solved by using iterative QPE [42]. Our
scheme needs no iteration.
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the qubit on the AnswerRegister is | D). Thus, the controlled
unitary operation Cy results in
1
V2
We expect that the measurement on Eq.(32) provides some
information on A\ owing to the eigenvalue equation Uy =
M. However, the result is practically useless, as it yields
2

only probabilities Pry;y = % and Pripy = "\Tl = % Fur-
ther sophisticated approach can involve measurement on

1(|U>+D> U) — D)
V2 V2 V2

1+ A 1—A
<2U>+2D>>®¢~

Vi = = (U)@¢+[D)@Uy). (32)

U3 ® P+ ® U¢>

(33)

Real part A =Re is obtained by measuring ¥ (3): Pryy) =
1a®
2

—H;‘R. Moreover, a simple modification (adding

an S gate between H and Controlled-U) provides the imag-
inary part. However, the conventional quantum computa-
tion needs numerous times of measurements. On the con-
trary, using only one measurement, our proposed method
determines the eigenvalue A at time 2 in the simple circuit
of “Hadamard test.”

The wave function develops in time through various
combinations of universal gates [1] during Cy gate. The
wave function itself does not inherently contain A. More-
over, it has no awareness that it will eventually take the
simple form of Eq.(32) after the Cy operation. Can we de-
termine A\ value by comparing particle motion by the wave
function, which inherently lacks information on A, under
explicit form Eq.(32)?7 Therefore, this, we express ¥ o) af-
ter controlled unitary operation, that ends at ¢t = Toy, in
coordinate representation

. 1 G=TcwEy
Vo) (21, 22,1) = ﬁ[e ey (xy)
(t=Tcy)Ep

+e iHR

Ap(21)|12 (T2, t). (34)

In Eq.(34), z1 € R and &y € R™B are the particle co-
ordinate of one qubit in AnswerRegister and that of mpg-

qubits in ProblemRegister, respectively. Exponential func-
t-Tcy)Ex
tionse 7r (X = {U, D}) represent free motion after

Cy gate operation. The feedback u(z1,Z2; A\) is computed
by Eq.(3) using the above expression Eq.(34). Comparing
this u(xy, F2; A) with measured feedback value reveals .

A numerical example is provided below for mp = 1
or ¢ € R%. As shown in Eqgs.(22), (23) and (24), we can
prepare arbitrary controlled unitary operation Cy by com-
bining CNOT and unitary matrix U [1]. The gate CNOT
can be calculated using Egs.(19), (20) and (21).

Assume an arbitrary unitary matrix

0.3771 + 0.5947: —0.6814 4 0.1995¢

U= 0.1313 +0.6978  0.7010 4 0.0664¢ |

(35)

The parameters required to implement Cy gate in a form
Eq.(23) are calculated as o = 1.2101, 8 = —2.3205, v =

—
D
~
o
-

3 0 E—N (¢,(0),(0))=(0.5.0.3)
e = N\ (0.1.-0.5) |
) -0.1= \\\ %/
£‘0.2 (‘0.5,0.1)/’ %-—_‘ ~ = //
[a] \/
0 02 04 06 08 i
0[-]
(b) 0.1
. 02287 03804 04061
2 0.2286. | L N ~0.4381] *1(0x,(0)=(05,0.3)
g 0 = N
2 //’/ (-05,0.1) \\? (0.1,-0.5)
0_,F="02286 -
o 02 04 056 08 1

0[]

Figure 3: Difference A as a function of 0 for three different pairs of
initial conditions (z1(0), z2(0)). Initial coordinates (x1(0),z2(0)) are
(0.5,0.3) for blue line, (0.1, —0.5) for green line and (—0.5,0.1) for red
line, respectively. Figure (a) shows overall variations of A relative to
0. While (b) shows in detail the points § where these A cross the line
A =0.

—0.5312, # = 1.1001. Assume that one of the eigenvector
is provided as follows

0.8367 }

V= [0.4060 —0.3677i (36)

Let A provide difference between u(x1, x2; A) and measured
value. Figure 3 shows the difference A as a function of
6 € [0,1], where 6 parametrizes A = ¢>™%. Among infinite
pairs of initial coordinate (x1(0),22(0)), three pairs are
tried: blue line for (0.5,0.3), green for (0.1, —0.5) and red
for (—0.5,0.1). The calculation along blue line provides two
solutions: 6 = 0.2287 and 0.3804. The green line crosses
A =0 at § = 0.2286 and 0.4061. Profile of the third, red,
line indicates 6§ = 0.2286 and 0.4381. The 6 value that all
these three pairs commonly indicates that the difference
A approximately assumes zero is § = 0.2286. We can
verify that this value correctly leads to the eigenvalue A =
e'2mx0-2286 — (01342 + 0.991.

The answer 6 = 0.2286--- is expressed as infinite se-
ries # = 0.0011--- in binary number. Therefore, the con-
ventional methods, as illustrated in Fig.1, require infinite
number of qubits. It should be noted that the result is prob-
abilistic in nature, necessitating repeated measurements to
obtain reliable outcomes.

6. CONCLUSIONS

We presented how the controlled-NOT(CNOT) gate,
a fundamental universal quantum gate for two qubits, is
physically realized in classical systems through carefully
designed feedback mechanisms. Feedback generation dur-
ing gate operation does not require a time integration task.
Moreover, we found that quantum phase estimation algo-
rithm, interpreted according to trajectory monitoring, re-
quires only one qubit in AnswerRegister.
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Our immediate task is to examine the perturbation pa-

rameters in Egs.(11), (12), and (25) such that the system
evolves within the linear space spanned by combinations of
|U) and |D). Subsequently, applying the proposed systems

to real problems, including Shor, Grover, ...

algorithms, is

to be followed. Our quantum computing system does not
require large peripherals. Thus, the installation of the sys-
tem to ‘edge’ or machine terminal represents an interesting
research topic.
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