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Abstract

As populations in advanced economies continue to age and birth rates
decline, a growing shortage of caregivers has emerged. This shortage
has led to an inability to meet the demand for rehabilitation through
human caregivers, prompting research into the automation of rehabili-
tation, such as robotic walkers. Estimating the user’s intent in a robotic
walker can improve safety and provide intuitive control, as well as per-
sonalized assistance, thus reducing the psychological barriers users may
face when interacting with the robot. This study aims to investigate
the intention of direction change based on head orientation by analyzing
gaze patterns during turning and while checking the surroundings. Gaze
analysis was performed using the Tobii Pro Glasses 3. Participants were
asked to perform a task involving both turning while navigating a specific
route and checking numbers placed around them, allowing for the col-
lection of gaze data. The collected gaze data were analyzed using three
machine learning models: Random Forest, Light GBM, and SVM—which
are capable of handling high-dimensional datasets and are expected to
achieve high classification performance. Using gaze data collected dur-
ing surrounding check tasks and direction change tasks, a classification
model was trained to distinguish between surrounding check behavior
(Class 0) and direction change behavior (Class 1). As a result, the Ran-
dom Forest model achieved a classification accuracy of 99.5%, the Light-
GBM model 99.8%, and the SVM model 99.4% for healthy participants,
consistently demonstrating high accuracy. For patients with Parkinson’s
disease (PD), the model trained on healthy participants could not be
directly applied. Still, an attempt to improve SVM classification accu-
racy by adjusting the threshold using the decision function resulted in a
classification accuracy of 64% at a threshold of 0.5.

Contribution of the Paper: This study’s main contribution is veri-
fying the effectiveness of gaze-based classification for distinguishing be-
tween turning and checking the surroundings in healthy individuals and
PD patients, concerning head orientation.
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1. INTRODUCTION

In recent years, Japan and many other countries have
faced a rapid increase in the aging population, leading to a
significant shortage of caregivers. This demographic shift
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has created a growing need for assistive robots and reha-
bilitation technologies to support daily activities [1]. Age-
related diseases also present serious challenges in aging so-
cieties. Reduced walking ability is particularly critical, as
it lowers a person’s ability to perform activities of daily liv-
ing (ADLs) and directly affects their quality of life (QoL).
Parkinson’s disease (PD), a progressive neurodegenerative
disorder, is one of the most common conditions affecting
mobility in older adults, with more than 10 million peo-
ple affected worldwide [2]. PD is characterized by motor
symptoms such as tremors, gait disturbances, and impaired
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postural reflexes, as well as non-motor symptoms includ-
ing cognitive decline and depression [3]. A typical motor
symptom in PD patients is freezing of gait (FoG), which
has been reported in approximately 54% of patients [4].

FoG is often described as the sensation of being ” glued
to the floor” and is difficult to predict [5]. This unpre-
dictability increases the risk of falls, significantly impacting
both ADLs and QoL for those living with PD.

Long-term physical therapy rehabilitation for Parkin-
son’s disease (PD) patients has been shown to be effective
in improving motor symptoms [6]. Additionally, it may
have a beneficial effect on non-motor symptoms, such as
improving cognitive function, mood, and reducing daytime
sleepiness [7].

In the gait rehabilitation of Parkinson’s disease (PD)
patients, the use of various assistive devices is anticipated.
Hardi et al. compared the effectiveness of a cane, crutches,
and a four-wheeled walker, demonstrating that the use of
any of these devices improves gait quality compared to
when no assistive device is used [8].

Additionally, Kegelmeyer et al. investigated the impact
of walking assistive devices on the gait patterns of Parkin-
son’s disease (PD) patients. They demonstrated that the
four-wheeled walker consistently improved gait variables
compared to other devices and resulted in less variability
[9].

These studies suggest that the four-wheeled walker is
effective in gait rehabilitation for PD patients.

In the past, gait rehabilitation was typically conducted
by specialists with expert knowledge. However, with the
ongoing aging population and shortage of caregiving staff,
it has become increasingly difficult to rely solely on tradi-
tional one-on-one rehabilitation. Therefore, the automa-
tion of rehabilitation using robotic technology is increas-
ingly seen as essential.

As a response to these challenges, there has been active
development of smart walkers that integrate various digital
technologies into the functionality of traditional walkers.

In particular, regarding intent estimation, it is expected
that users will not only be able to operate the smart walker
intuitively, enabling more adaptive control, but also that it
will reduce the psychological barriers associated with the
use of the smart walker.

2. RELATED WORKS

2.1. Studies on smart walkers with intent estimation func-
tionality

Examples of research on smart walkers with intent esti-
mation functionality include intent recognition using pres-
sure sensors [10], a fusion method of forearm reaction force
and gait kinematics using a laser rangefinder [11], con-
trol using force-acceleration features [12], and a monitoring
walker utilizing IoT [13]. However, many of these studies
still face challenges related to the accuracy of intent esti-
mation and the control of the walker, and the realization of
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Figure 1: Smart Walker Outfit

accurate intent estimation and corresponding walker con-
trol is required.

2.2. Previous research

Against this background, we have developed a four-
wheeled walker-type assistive robot, the ”Smart Walker,”
for gait assistance and rehabilitation of Parkinson’s Disease
(PD) patients. The appearance of the Smart Walker is
shown in Figure 1.

The Smart Walker is a robot designed to promote re-
habilitation and reduce FoG by recognizing the user’s gait
and physical condition through the installation of motors
and various sensors (including cameras) on an existing four-
wheeled walker, and providing appropriate interventions.

This robot detects the natural action of the user push-
ing the walker during walking through a torque sensor in
the motor attached to the bottom of the walker and starts
the assistance by recognizing the intent to walk.

Additionally, by using MediaPipe, an open-source ma-
chine learning library provided by Google [14], for face
recognition, the Smart Walker recognizes the user’s in-
tent to turn by detecting when the user turns their face
towards the direction of the turn and assists with the di-
rection change.

However, in the direction change assistance feature of
the Smart Walker, it was also confirmed that the system
sometimes misinterprets the user’s intent, such as recog-
nizing a surrounding check as a direction change trigger,
leading to unintended actions like turning when the user
does not actually intend to do so.

This issue is common with the challenge mentioned ear-
lier in the research on smart walkers, which is ”the realiza-
tion of accurate user intent estimation and corresponding
walker control.”

From the research background, we confirmed the im-
portance of automating rehabilitation for Parkinson’s dis-
ease (PD) patients and relieving freezing of gait (FoG) to
improve the quality of life (QoL) of PD patients. Addi-
tionally, we confirmed that smart walkers are useful for
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these purposes, and we proposed controlling assistive walk-
ers based on face orientation, verifying their effectiveness.
However, while face orientation-based control is effective
in improving the operability of PD patients, there is a
challenge: when the user does not intend to turn, espe-
cially during a surrounding check, unintended actions oc-
cur. Such malfunctions can amplify the user’s anxiety and
pose a safety risk.

In this study, to address this issue, we focus on gaze
data, which has been shown to be effective in intent esti-
mation tasks in prior research. We collected and analyzed
face orientation and gaze data during direction changes
and surrounding checks, comparing their characteristics.
In particular, by performing data analysis using machine
learning, we aim to construct a model that accurately es-
timates the intent to turn, thereby reducing the Smart
Walker’s malfunctions and improving both safety and op-
erability. In other words, this study focuses on ”accurate
user intent estimation” within the broader challenge of ”re-
alizing accurate user intent estimation and corresponding
walker control.”

2.3. Studies of the relationship between gaze information
and head

The relationship between gaze information and head
movement has been extensively studied. Early research fo-
cusing on the coordinated movement of the head and eyes
revealed that the body tends to follow the direction of gaze
[15]. Doshi et al. studied driving tasks and found that in
the case of a sudden visual stimulus appearing at the edge
of the field of view, the gaze moves first and the head fol-
lows. In contrast, during a conscious shift in attention, the
head moves first and the gaze follows [16]. Imai et al. inves-
tigated the relationship between head movement and gaze
during walking and turning [17]. Their research showed
that during straight walking, the head is adjusted to main-
tain a forward direction. Additionally, during a direction
change, the head rotates ahead of the body, predicting the
direction of movement. Durant et al. [18] demonstrated
that gaze movement contributes to improving the accuracy
of visual motion information during walking and stabiliz-
ing head-centered motion, revealing how visual processing
during direction changes and surrounding checks is made
more efficient.

Gaze information has been reported to be related to
intent determination and action planning in various fields.
In the following, we will specifically discuss visual infor-
mation, methods of visual information analysis, and their
applications.

Gaze is considered an important indicator for estimat-
ing a person’s behavioral intentions, and it has been shown
in many studies to be particularly involved in direction
changes during walking [19], [20]. Generally, people tend
to direct their gaze toward the direction they intend to
turn before making the turn [21]. Research on gaze be-
havior during walking has reported that gaze movements
precede foot movements, indicating the intention to turn
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[22]. Furthermore, studies analyzing pedestrian gaze pat-
terns have shown that, in situations where a change in
direction is required, the user’s gaze tends to move toward
the new direction in advance [23]. Regarding gaze stud-
ies in Parkinson’s disease (PD) patients, Gibbs et al. [24]
highlighted the importance of evaluating eye movements
in natural environments, revealing that PD patients have
longer fixation times and smaller saccade amplitudes.

From this, it can be understood that there is a rela-
tionship between gaze information and head movement,
and that this relationship can change depending on the
situation or task. However, while many of these studies
focus on walking tasks, they do not clarify the relationship
between the two during the use of a smart walker, and the
subjects involved are not PD patients, but healthy individ-
uals. Therefore, in this study, we focus on the ”direction
change task” and the ”surrounding check task” during the
use of the Smart Walker, and aim to achieve ”accurate user
intent estimation” by clarifying the relationship between
head movement and gaze during these tasks.

3. PROPOSED METHOD

3.1. How to obtain gaze data

This study collected gaze data using the Tobii Pro Glasses
3, a wearable eye-tracking device developed by Tobii Corp.

The device employs the pupil center corneal reflection (PCCR)

method, which enables highly accurate estimation of gaze
points. The field of view is 106° diagonally, 95° horizon-
tally, and 63° vertically. Eye movements and fixation points
were recorded in real time while participants wore the de-
vice. The horseshoe-shaped walker used in this study is
thought to reduce wobble while walking. It also leads to
label bias since the majority of the data is collected while
walking during the experiment. Therefore, data during
walking is not used for training. The procedure for data
collection was as follows:

1. Calibration was performed by asking the participant
to fixate on a central point on a calibration card held
0.5 to 1 meter away.

2. The device’s built-in sensors continuously recorded
gaze positions and trajectories during the experiment.

3. The recorded data were analyzed as time series data
using Tobii Pro Lab, software provided by Tobii Corp.

3.2. Method for obtaining head orientation data

In this study, multiple methods were tested to obtain
accurate head orientation data, and the accuracy of each
method was verified. After evaluating several approaches,
we concluded that the methods tested for acquiring head
orientation data were unreliable due to poor recognition
accuracy. Therefore, this study decided to perform intent
estimation using only gaze data.
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3.3. Method for classifying gaze data

In this study, gaze data obtained from the Tobii Glasses
were classified into ”surrounding check” and
”direction change” using three machine learning methods:
Random Forest, Light GBM, and SVM (Support Vector
Machine), and their performance was compared.

3.4. Experiment with healthy participants

Before conducting the experiment with Parkinson’s dis-
ease (PD) patients, a walking experiment using the Smart
Walker was performed with four healthy participants.

A walking path was created as shown in Figure 2. The
following is the procedure for the experiment:

1. The participants, wearing the Tobii Glasses, used the
Smart Walker and stood at the ”Start” position.

2. They walked straight for 2 meters from ”Start” to
point A, and at point A, they turned right.

3. After completing the turn, they walked straight for
1 meter and turned right at point B.

4. From point B, they walked straight for 2 meters to
point C, where they were instructed to pause.

5. The participants were asked to look at the designated
number (twice).

6. They then walked straight for 2 meters from point D
to point E, and at point E, they turned left.

7. After completing the turn, they walked straight for
1 meter and turned left at point F.

8. After walking straight for 2 meters, they paused at
the experimenter’s instruction.

9. The participants were asked to look at the designated
number (twice).

10. They then walked straight for 2 meters and paused

for 3 seconds at the ”Goal.”

The entire experiment was conducted twice for each
participant.

Direction Change ( = ) : 4 Times
Surrounding Check ( - ) :4Times

l
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Figure 2: Walking Path

3.5. Fvaluation Method

For the gaze data obtained from the preliminary exper-
iment, machine learning was applied, and the performance
of multiple models was compared to determine the opti-
mal classification method. First, labeling was performed

on the data collected from Tobii Pro Lab. Specifically,

”0” was assigned for surrounding check tasks and 71”7 for

direction change tasks. Manual labeling was done while

referring to the video of the experiment recorded by Tobii.
The input variables are as follows:

e Gaze point X/Y : 2D coordinates of the gaze position
on the screen

e Gaze point 3D X, Y, Z : 3D coordinates of the gaze
position in space

e Gaze direction left X, Y, Z : Unit vector representing
the gaze direction of the left eye

e Gaze direction right X, Y, Z : Unit vector represent-
ing the gaze direction of the right eye

e Pupil diameter left : Pupil diameter of the left eye
(in mm)

e Pupil diameter right : Pupil diameter of the right eye
(in mm)

e Fixation point X, Y : The 2D location where gaze
fixation occurred on the screen

3.5.1. Random Forest

Classification of gaze data was performed using Ran-
dom Forest (RF). The gaze data used were from experi-
ments with healthy participants, and a model was created
to classify surrounding check actions (Class 0) and direc-
tion change actions (Class 1).

The analysis procedure is as follows:

1. Data containing missing values were removed.

2. Label Cleaning: Label —1 (walking only) was ex-
cluded, and only data necessary for intent estimation
were used.

3. The data were split into training (80%) and testing
(20%) sets.

4. To address class imbalance,
the parameter class_weight="balanced" was set.

5. Hyperparameters were optimized using Grid Search
Cross-Validation(GridSearchCV) .

6. Stratified K-Fold Cross-Validation with 5 splits was
performed to check the generalization performance.

7. The prediction results on the test data were evalu-
ated, and accuracy, F1 score, and feature importance
were calculated.

3.5.2. LightGBM

Next, a machine learning model using Light GBM was
built, and its performance was evaluated. Based on the
gaze features, classification was performed for surrounding
check (Class 0) and direction change (Class 1). The data
processing procedure is as follows:

1. Removal of Missing Values: To maintain data in-
tegrity, missing data were excluded.

146



CNSER

Int. J. Computer Vision Signal Process.

2. Label Cleaning: Label —1 (walking only) was ex-
cluded, and only data necessary for intent estimation
were used.

3. Data Splitting: 80% of the data was used for training,
and 20% was used for testing.

4. Class Imbalance Correction: The sample count for
each label was considered, and the scale_pos_weight
was calculated.

The hyperparameters optimized using Optuna are as
follows:

e num leaves: From 20 to 100

e learning rate: From 0.001 to 0.01
e n_estimators: From 100 to 500

e min data_in_leaf: From 50 to 100

e feature_fraction: From 0.8 to 1.0

The optimization was performed by maximizing the F1-
score of five-fold cross-validation during training.

3.5.83. SVM

Finally, SVM was applied using all the features. Data
containing missing values were removed. Label —1 (walk-
ing only) was excluded, and only data necessary for intent
estimation were used. To address class imbalance,
class_weight="balanced" was applied, and hyperparam-
eter optimization was performed using GridSearchCV to
adjust the values of C' (regularization parameter) and
(kernel coefficient).

3.6. Fxperiment with PD Patients

Based on the data obtained from the preliminary ex-
periment, an experiment was conducted with Parkinson’s
disease (PD) patients to evaluate the discriminant model.
One PD patient participated as the subject, using the
Smart Walker while walking along the path shown in Fig-
ure 3.

Surrounding Check ( =)

Direction Change ( ——» )
} 4 Times
Walk Straight (= —» )

Figure 3: Walking Path Used in the PD Patient Experiment

Based on the results of the preliminary experiment,
changes were made to the experimental environment to
induce more natural surrounding check actions. Specifi-
cally, in the preliminary experiment, four sheets of paper
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with numbers were placed on the same wall. In this ex-
periment, the numbers were randomly placed at a height
of 120 c¢m on all four walls. Additionally, to avoid the sub-
ject memorizing the positions of the numbers, the numbers
were randomly rearranged before the second trial. Other
than the above changes, the experimental procedure is the
same as for the healthy subjects.

4. RESULT

4.1. Experiment with healthy participants
4.1.1. Random Forest

The classification results using Random Forest are sum-
marized in Table 1. Five-fold cross-validation on the train-
ing data yielded an average accuracy of 99.3% (standard
deviation: 0.3%). After training with the optimized hy-
perparameters, the model was evaluated using the test set.

Table 1: Classification Results Using Random Forest

Class Precision Recall F1l-score
0 (Surrounding Check) 1.00 0.99 0.99

1 (Direction Change) 0.99 1.00 1.00
Accuracy 0.995

Macro Avg 1.00 0.99 1.00
Weighted Avg 1.00 1.00 1.00

Feature Importance in Random Forest

eeeeeeeee portance

Figure 4: Feature Importance in Random Forest

Table 1 presents the precision, recall, and F1-score for
each class, with an overall accuracy of 99.5%. The model
demonstrated excellent performance in distinguishing be-
tween “Surrounding Check” and “Direction Change”.

Feature importance analysis (Figure 4) indicated that
”Pupil diameter right,” ”Fixation point Y,” and ”Fixation
point X” were among the most influential features. These
variables reflect key differences in gaze behavior between
the two tasks.

4.1.2. LightGBM

The performance of the optimized model is shown in
Table 2.

The feature importance of LightGBM was analyzed,
and the main factors for intent estimation in gaze data are
shown in Figure 5.
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Feature Importance in LightGBM (Optimized)

Fixation point X
Fixation point Y
Pupil diameter left
Pupil diameter right

Gaze direction left Y

Feature

Gaze direction right Y

Gaze direction right Z

Gaze point X

Gaze direction left Z

Gaze point Y

0 2000 4000 6000 8000 10000 12000
Feature Importance

Figure 5: Feature Importance in Light GBM

4.1.8. SVM

During training, the model was trained using gaze data
from healthy participants, and five-fold cross-validation
was performed. As a result, the optimal hyperparameters
were found to be C' = 100, v = 1, with an RBF kernel.
The average accuracy in the cross-validation was 99.4%
(standard deviation 0.0013), showing a high value.

Furthermore, in the test using the training data, the
accuracy reached 99.4%, and the precision, recall, and F1-
score for each class all recorded over 99%. This result con-
firmed that the model built based on healthy participant
data has very high classification performance.

The feature importance for each feature is shown in
Figure 6.

Since SVM cannot directly visualize feature importance,
Permutation Importance was used to evaluate the impor-
tance of features. Permutation Importance is a method
that estimates the relative importance of each feature by
randomly shuffling the values of each feature and measur-
ing the impact on the model’s prediction accuracy.

Feature Importance in SVM (Permutation Importance)
Fixation point X
Fixation point Y
Gaze direction right X
Pupil diameter right
Gaze direction left X
Pupil diameter left

Gaze direction left Y

Feature

Gaze direction right Y
Gaze point Y
Gaze point X
Gaze direction right Z
Gaze direction left Z
Gaze point 30 X {II
Gaze point 30 Y

Gaze point 30 Z

0.00 005 010 015 020 025
Permutation Importance (Decrease in Accuracy)

Figure 6: Permutation Importance Importance in SVM

Table 2: Optimization Results of Light GBM

Metric Score
Best Cross-Validation Fl-score 0.9974
Test Accuracy 0.9984
Test Fl-score 0.9986

As a result of comparing three methods—Random For-
est, LightGBM, and SVM—LightGBM showed the high-
est classification accuracy in intent estimation using gaze
data. Specifically, in cross-validation with healthy partici-
pant data, test accuracy of 99.8% was achieved, with classi-
fication accuracy (precision, recall, and Fl-score) for each
class also exceeding 99%. However, SVM demonstrated
stable performance with relatively small amounts of data,
and due to its ability to suppress overfitting while appro-
priately learning decision boundaries, it was determined to
be suitable for the dataset used in this study. In addi-
tion, since the classification threshold in the SVM decision
function can be flexibly adjusted, it is possible to improve
classification performance even when the distribution of
PD patient data differs from that of healthy participants.
Therefore, SVM was adopted as the method for evaluating
classification performance on PD patient data.

4.2. Ezxperiment with PD Patients

Using the SVM model identified as optimal in the pre-
vious experiments, we evaluated classification performance
on data collected from a PD patient.

The results are presented in Table 3. While the model
showed high recall (76.5%) for “Direction Change,” recall
for “Surrounding Check” remained low (32.5%), yielding
an overall accuracy of 53.7%.

The confusion matrix (Figure 7) highlights this imbal-
ance.

To improve performance, we adjusted the decision thresh-
old of the SVM decision function.

The Precision for Class 0 was 0.60, and for Class 1 it
was 0.51, indicating that the Precision for Class 0 was not
particularly low. While a portion of the predicted Class
0 instances were correct, the overall classification perfor-
mance remained limited due to the low Recall. Since the
model tended to overpredict Class 1, there is room for im-
provement by adjusting the classification threshold in the
SVM decision function. By modifying the threshold, it is
possible to introduce a bias in the prediction, allowing the
model to be adjusted to classify more readily into either
Class 0 or Class 1.

At a threshold of 0.5, recall for “Surrounding Check”
improved to 70.0%, and the F1-score rose from 0.42 to 0.66,
demonstrating that threshold tuning significantly enhances
model performance for PD patients.

5. DISCUSSION

5.1. Performance Comparison: Healthy Participants wvs.

PD Patients

In this study, we developed a gaze-based classification
model using Support Vector Machine (SVM), trained on
data from healthy participants. The model achieved high
performance, with a classification accuracy of 99.4% and
an Fl-score of 0.994 on the training dataset.
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Table 3: Classification Results for PD Patient Data

Class Precision Recall Fl-score
0 0.60 0.33 0.42
1 0.51 0.76 0.61
Accuracy 0.54
Balanced Accuracy 0.54
Macro Avg 0.56 0.54 0.52
Weighted Avg 0.56 0.54 0.51
Confusion Matrix (SVM)
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Figure 7: Confusion Matrix for PD Patient Data

However, when applied to gaze data from a participant
with Parkinson’s disease (PD), the classification accuracy
dropped significantly to 53.7%. In particular, the recall
for “Direction Change” remained relatively high (76.5%),
while the recall for “Surrounding Check” was considerably
lower (32.5%), suggesting an imbalance in model recogni-
tion.

This discrepancy is likely due to differences in gaze be-
havior between healthy individuals and PD patients.

By comparing the fixation point coordinates during
surrounding check behavior (Class 0) and direction change
behavior (Class 1) while using the walker between healthy
participants and patients with Parkinson’s disease (PD),
the following observations were made:

1. PD patients tend to exhibit a wider distribution of
gaze during surrounding check behavior (Label 0)
compared to healthy participants.

2. During direction change behavior (Class 1), healthy
participants move their gaze across a wider area.

3. Healthy participants show a greater number of gaze
clusters than PD patients, indicating a tendency for
more fine-grained gaze shifts.

4. Notably, differences in gaze patterns between healthy
participants and PD patients were most prominent
during direction changes.
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Because SVM constructs decision boundaries strictly
based on the distribution of training data, it may fail to
generalize effectively to populations with different gaze char-
acteristics.

To address this issue, we adjusted the decision thresh-
old of the SVM’s decision_function. This function out-
puts a confidence score for class membership, and the clas-
sification outcome can be controlled by varying the thresh-
old.

By increasing the threshold to 0.5, recall for “Surround-
ing Check” improved substantially—from 32.5% to 70.0%
and the F'l-score rose from 0.42 to 0.66. This result demon-
strates that threshold tuning is an effective strategy for
adapting models to data with different distributions.

6. CONCLUSIONS

This study proposed an intent estimation model based
on gaze data and evaluated its performance using SVM for
both healthy participants and PD patients.

The model achieved high accuracy on the training data
from healthy participants, with a classification accuracy of
99.4% and an Fl-score of 0.994. However, when applied
to PD patient data, the accuracy dropped significantly to
53.7%, likely due to differences in gaze patterns between
the two populations.

To address this issue, we applied threshold tuning to
the SVM decision function. By optimizing the threshold,
we improved the classification accuracy for PD data to
64.0%. This adjustment mitigated the model’s bias toward
predicting the “Direction Change” class and improved its
ability to detect “Surrounding Check” behavior. These re-
sults demonstrate that even with models trained on healthy
individuals, adaptation strategies such as threshold adjust-
ment can significantly enhance performance when applied
to different user groups.

6.1. Future Challenges

Improvement of the model considering the gaze char-
acteristics of PD patients is necessary. Specifically, the
following points are raised as future challenges.

e Collect additional data from PD patients and in-
crease the variation in the training data
A model trained only with healthy participant data
may not be able to account for the variability in gaze
behavior of PD patients. Therefore, by collecting
sufficient data from PD patients and incorporating
it into the model’s training, the generalization per-
formance can be improved.

e Introduction of new features to better capture gaze
behavior during surrounding checks
In this study, only gaze data were used. However, by
adding features that consider the fixation stability
and patterns of variation in the gaze, it is believed
that more accurate intent estimation can be achieved.
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e Optimization of data preprocessing considering out-
liers
Since PD patient data often contains gaze deviations
or irregular movements, applying outlier handling
and smoothing techniques is expected to improve the
model’s accuracy.

Additionally, in this study, it was initially planned to
incorporate head orientation data into the model, but due
to insufficient data acquisition accuracy, the focus was placed
solely on gaze information. In future research, the accu-
racy of head orientation data acquisition will be improved,
and by integrating it with gaze information, the goal is to
construct a higher-precision intent estimation model.

The results of this study demonstrate the potential of
intent estimation using gaze data and provide important
insights for future developments. In particular, the de-
velopment of a model considering the adaptation for PD
patients is expected to contribute to the advancement of
walking assistive systems and rehabilitation support tech-
nologies. For example, this could lead to the development
of gaze-guided assistive devices and systems that support
stable walking by promoting appropriate gaze behavior
during direction changes in PD patients, taking into ac-
count differences in gaze strategies between healthy indi-
viduals and those with PD.
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