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Abstract
Although global interest in well-being and QoL is increasing, continu-
ous awareness of one’s QoL in daily life remains challenging due to the
need for repeated questionnaire responses. In this study, we evaluate
the performance of a prediction model for QoL in healthy older adults
using a Garmin Venu 3S fitness tracker and a FonLog data collection
application to collect non-motor information and QoL data, and predict
QoL using a support vector machine (SVM). The results of the predic-
tion using a SVM showed that the Accuracy was approximately 0.96
and the F1-Score for each class was approximately 0.88 or higher. These
results suggest the effectiveness of the QoL prediction model using non-
motor information. In the future, we plan to improve the processing
and prediction in real time, and to evaluate the accessibility, usability,
and effectiveness of the system for a wider range of users through exper-
iments with non-motor subjects.
Contribution of the Paper: Since smartwatches can be worn eas-
ily and are not difficult to use on a daily basis, the development of a
prediction model is expected to be an easy way to measure QoL.
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1. INTRODUCTION

There is currently a growing interest in wellbeing and
QoL around the world. Well-being encompasses not only
physical health, but also mental and social dimensions,
and relates to lifelong happiness. It includes both individ-
ual and societal prosperity, and in economically advanced
countries, the concept of well-being is being emphasized as
a way of thinking about happiness. As an example, Ox-
ford University’s Center for Well-Being Studies, together
with the United Nations, publishes the “World Happiness
Report” every year, scoring each country’s assessment of
life [1].

Typically, QoL is assessed through multiple-question
surveys, which are impractical for continuous daily mon-
itoring. In this study, we evaluate the performance of a
QoL prediction model based on non-motor information ob-
tained from healthy older adults. non-motor information
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refers to data such as heart rate and step count, which
can be obtained simply by wearing a commercially avail-
able smartwatch. Therefore, if a prediction model can be
established, QoL can be easily measured.

2. RELATED WORKS

Victorino et al. conducted a study on Parkinson’s dis-
ease using non-motorized information as input to a predic-
tion model [2]. This study aimed to predict the wear-off
phenomenon, which is a recurrence of symptoms in Parkin-
son’s disease patients, and demonstrated the feasibility of
accurate predictions using non-motorized data. We have
also developed a system that can acquire data from smart-
watches, allowing easy input of non-motor information.

non-motor information can be obtained by anyone who
can wear a smartwatch, and can be used as an indicator of
health status and life rhythm, so it can be used to predict
various events, not only Parkinson’s disease. In this study,
QoL was used as a prediction target so that it can be used
by healthy people who do not suffer from the disease, and
it was decided to evaluate how accurate the results actually
are.
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3. METHOD

This study uses a Garmin Venu 3S smartwatch, the
FonLog app, and a prediction model. This is adapted from
the model developed by Victorino et al, but the questions
in the FonLog app are changed to QoL indices [2]. The
Garmin Venu 3S acquires the patient’s non-motor infor-
mation such as heart rate, and the FonLog app records the
questionnaire about QoL.

The Garmin Venu 3S is a fitness tracker from Garmin
that can measure a variety of data from the device’s on-
board sensors. It weighs 40.0 g and measures 41 x 41 x 12
mm. It is also waterproof, making it suitable for data col-
lection [3]. In this study, heart rate, stress score, number
of steps, and sleep data will be collected.

The Garmin Venu 3S data set is measured by a pho-
toplethysmograph (PPG) and accelerometer sensor. the
PPG sensor estimates heart rate by detecting changes in
the intensity of reflected light using light shone on the skin.
The changes in reflected light are due to contraction and
expansion of arteries and arterioles caused by pulsating
blood pressure. In addition to heart rate, Venu 3S uses
heart rate variability (HRV) to estimate stress levels. Sleep
stage, on the other hand, is estimated from a combination
of heart rate, heart rate variability, and accelerometer data.
Finally, Venu 3S uses accelerometer data to estimate the
number of steps taken.

Each data set available on the Garmin Venu 3S has a
different time interval: heart rate, expressed in beats per
minute (bpm), is provided every 15 seconds. Steps taken
are accumulated every 15 minutes, and stress scores are
reported every 3 minutes. Scores range from 0 to 100, with
100 indicating the highest stress. Other values include “-
1” for insufficient data to estimate stress and “-2” for too
much movement. Each sleep phase is measured along with
its start and end times.

FonLog is an Android smartphone application used pri-
marily as a data collection tool for human activity recog-
nition in nursing services [4]. In this study, EuroQol’s EQ-
5D-5L was used to assess and label each participant’s QoL
[5].EQ-5D-5L contains the following five items:

1. Degree of mobility
2. Personal care
3. Daily activities
4. Pain / discomfort
5. Anxiety / distraction

For each of these items, the degree of problem is recorded
on five levels: no problem, minor problem, moderate prob-
lem, serious problem and extreme problem. Each item is
recorded on a 5-point scale: no problem, minor problem,
moderate problem, serious problem, and extreme problem.
In addition to the EQ-5D-5L, the participants also answer
a questionnaire in which they write their impressions of
their participation in the experiment.

System users were provided with a Garmin Venu 3S.
The Garmin Connect app is developed by Garmin and al-
lows users to check their data transmitted from the Venu

3S to their smartphones via Bluetooth. The Garmin Con-
nect app is developed by Garmin, Inc. Meanwhile, the
Venu 3S dataset is automatically sent to a server system
on Amazon Web Services (AWS) [6].Data collected by the
FonLog app is also automatically sent to the FonLog server
for storage and retrieval.

There are no strict limitations or restrictions during the
data collection period, but system users are asked to wear
the Garmin Venu 3S while bathing and sleeping as much
as possible. It is also emphasized that users should use
the FonLog application to record their data approximately
three times per day. Users can modify and review their
responses over time.

The server system that receives the data from the Garmin
Health API stores the data in a database and makes it
available for downloading after the experiment is complete.
When downloading data, the server system applies the user
ID assigned to each system user and the time period of the
data to be retrieved to SQL statements, and retrieves the
matching data from the database.

After data extraction, pre-processing is performed. First,
the raw sleep data is converted to match other datasets.
Datasets such as heart rate are reported for each date and
time. As an example, the raw heart rate dataset is shown
in Table 1.

Table 1: Raw heart rate dataset from Garmin Health API
Time Heart Rate

2021/3/23 1:51:15 84
2021/3/23 1:51:30 84
2021/3/23 1:51:45 84

On the other hand, the raw sleep dataset is reported
for each calendar day and each sleep category. An example
is shown in Table 2.

Table 2: Raw sleep dataset from Garmin Health API (dates omitted)

Start Time End Time Sleep Type
2021-02-23 02:24:00 2021-02-23 02:32:00 Light
2021-02-23 02:32:00 2021-02-23 02:33:00 Awake
2021-02-23 02:33:00 2021-02-23 02:36:00 Light

Since the prediction model requires a unified dataset,
all input data were merged, each sleep stage is converted
to a minute feature and distributed across calendar days
to match the other datasets that were resampled at a spe-
cific interval. An example of the transformed sleep data is
shown in Table 3.

Table 3: Converted sleep dataset

Calendar Date Awake Deep Light REM
2021-02-23 2.0 0.0 150.0 27.0
2021-02-25 0.0 150.0 66.0 54.0
2021-02-23 0.0 83.0 55.0 0.0
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Next, several sleep features were computed from the
transformed sleep dataset.

Total non-REM duration

= Deep sleep duration + Light sleep duration (1)

Total sleep duration

= Total non-REM duration + REM sleep duration (2)

Total non-REM percentage

=
Total non-REM duration

Total sleep duration
(3)

Sleep efficiency

=
Total sleep duration

Total sleep duration + Total awake duration
(4)

Total non-REM duration is the state in which the body
and brain are at rest and is the sum of Deep sleep dura-
tion and Light sleep duration (equation (1)). Total sleep
duration is the sum of total non-REM duration and REM
sleep duration (equation (2)). Total non-REM percentage
is the ratio of the Total non-REM duration to the Total
sleep duration (equation (3)) [7]. Sleep efficiency is the
ratio of sleep duration to total sleep duration, including
awake duration (equation (4)) [8].

After processing the sleep datasets, cleanup and resam-
pling were performed on all raw datasets. First, a “-1” was
assigned to the missing values before resampling. The “-
1” value was used according to the way the Garmin Health
API reports stress scores that could not be estimated. In
addition, a value of “-1” indicates that the fitness tracker
was not worn. Next, we resampled each dataset to match
the intervals. The data set was resampled at 15 minute
intervals and missing values were forward filled. This ap-
proach simulates real-time streaming from fitness trackers,
where future data are unavailable at the time of prediction.

The survey results were similarly complemented (for-
ward fill) with the previous data and merged with the re-
sampled Garmin data. This data set was then fed into the
prediction model.

Although there are no restrictions on the algorithm
used for the prediction model, we use a support vector
machine (SVM), which is currently considered one of the
best learning models in pattern recognition due to its high
discriminative performance on untrained data [9]. SVM
aims to learn effective separating hyperplanes for classi-
fication problems in high-dimensional spaces, and in par-
ticular to improve generalization performance by finding
decision boundaries that maximize the margin.

SVM can be classified using simple hyperplanes when
data is linearly separable, but when linear separation is
difficult, it can be applied to nonlinear data at low com-
putational cost by using the kernel trick. The kernel trick

transforms data that are not linearly separable in the orig-
inal space into a linearly separable form by mapping the
data to a higher-dimensional space.

Typical kernel functions include linear kernel, Gaussian
kernel (RBF kernel), polynomial kernel, and sigmoid ker-
nel. Since the choice of kernel function greatly affects clas-
sification accuracy, it is important to select an appropriate
kernel according to the distribution and characteristics of
the data.

SVM is characterized by (1) high classification accuracy
even with small amounts of data, (2) the ability to handle
nonlinear problems through kernel tricks, and (3) relative
robustness against outliers. In particular, SVM is known
for its good classification performance even with small sam-
ple sizes and high-dimensional data, and is widely used in
fields such as image recognition and bioinformatics.

4. EXPERIMENT

In this experiment, we evaluated the accuracy of pre-
dicting QoL from non-motor information with the cooper-
ation of 10 healthy older adults. QoL was recorded over a
period of 21 days using FonLog with a Garmin Venu 3S.
The recorded data sets were downloaded from each server
to a local computer and evaluated using an SVM prediction
model.

First, the collected data were preprocessed; the Garmin
dataset was preprocessed and then the QoL records ob-
tained from the FonLog were merged into each record at
15-minute intervals. For each 15-minute interval, a label
of 1 was assigned when the QoL was not at its highest
state during that 15-minute period, and a label 0 when it
was at its highest state. This labeling was done to account
for classification bias, as many of the participants gave the
highest ratings.

To deal with unbalanced data, we multiplied the input
data by the inverse of the number of label occurrences rel-
ative to the total number of samples to align the ratio of
weights. For the hyperparameters required for the model,
we tried all combinations from the following list and se-
lected the best model.

1. C parameter selected from 1, 10, 100

2. Kernel is RBF (Radial Basis Function kernel)

3. RBF parameter, gamma (kernel influence range) se-
lected from 1, 0.1, 0.01

5. RESULTS

First, we confirmed the imbalance of the data collected
in this study. While the total number of records for the 10
participants in the experiment was 15056, the number of
records assigned label 1 was 4214, or slightly less than 30
percent of the records were assigned label 1.

After searching the list for the optimal combination of
parameters, the best performance on the test data was
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obtained when C=100 and gamma=0.1. Using this optimal
model, we calculated the Accuracy, Precision, Recall, and
F1-score. The results are shown in Table 4.

Table 4: Classification Results for Healthy Older Data

Class Precision Recall F1-score
0 0.995624 0.949896 0.972222
1 0.803279 0.980000 0.882883

Accuracy 0.955095 0.955095 0.955095
Macro Avg 0.899451 0.964948 0.927553

Weighted Avg 0.962403 0.955095 0.956792

The confusion matrix is shown in Figure 1, and the
importance of each feature is shown in Figure 2.

Figure 1: Confusion matrix of healthy data

Figure 2: Permutation Importance in SVM

The prediction results were 0.955095 for Accuracy,
0.882883 for Class 1 F1-Score, and 0.972222 for Class 0
F1-Score, all of which indicate strong model performance.
This indicates that it may be effective to predict QoL from
non-motor information using a prediction model. The con-
fusion matrix in Figure 1 also shows that many of the data

were correctly classified. In addition, Figure 2 highlights
sleep-related metrics as key predictors of QoL.

6. CONCLUSION

In this study, QoL was predicted using non-motor in-
formation obtained from a smartwatch, and the model was
evaluated. SVM was used to predict QoL for healthy older
adults, with Class 1 being the case where QoL is not at
its highest state. The results showed that the Accuracy
was 0.955095, and the F1-Score for each class was high.
The smartwatch is easy to wear and suitable for daily use,
indicating its usefulness as a simple means of quantitative
QoL monitoring.

While the current study shows promising results, the
small sample size limits generalizability. Future work will
involve larger and more diverse populations. In particular,
we plan to conduct experiments with non-healthy users to
evaluate the accessibility, usability, and effectiveness of the
system for a wider range of users. Currently, the collected
data are processed and labeled together and input into
a prediction model. Future work will focus on enabling
realtime data processing and QoL forecasting.
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