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Abstract
Human-robot interaction is a major field of investigation, focusing on the
optimization of working processes as well as employee productivity. De-
spite an enormous amount of progress made in this direction, the neces-
sity to develop systems targeting people with disabilities remains a press-
ing need. This report presents a novel paradigm for assistive robotics
via the development of an intelligent work cell for aging individuals and
physically disabled persons. The system merges depth camera technol-
ogy, light machine learning, and MediaPipe-based human tracking to
enable real-time human-robot interaction through accurate inference of
user intent. Key innovations include a gimbal-mounted depth camera
for motion tracking of the user, a modular 3D-printed gripper for easily
customizing manipulation, and an efficient gesture classification pipeline.
Experimental results demonstrate that the system achieves over 90% av-
erage gesture recognition accuracy, which is comparable to or higher than
similar gesture-based systems, with real-time performance. The system
bridges the gap between theoretical research and practical application in
assistive robotics.

Contribution of the Paper: The contribution of this paper lies
in the development and evaluation of an innovative system to interpret
human gestures through vision-based technology, with a specific focus
on improving human-robot collaboration.
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1. INTRODUCTION

Growth in automation and robotics in workplaces has
opened new possibilities for the inclusive employment of
older people and persons with physical disabilities. Stud-
ies indicate that robotic workplaces have a high potential
to allow the inclusion of workers with mobility disabilities
by reducing physical stress and allowing the adaptation of
tasks through the application of assistive technologies [1].
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As the global workforce ages and the demand for diverse
barrier-free workplaces increases, the demand for flexible
human-oriented automation solutions is increasing [2].

One solution is the development of adaptive work cells,
flexible workspaces where humans and robots collaborate
seamlessly. These types of workstations are programmed
to maximize productivity while serving the needs of the in-
dividual user [3]. Recent advances in human-robot collab-
oration have improved efficiency and safety of interaction
in the workplace [4], [5].

However, while such technological advancements have
been occurring, attempts at explicitly addressing assis-
tance for individuals with disabilities in such collaborative
working environments have been sparse [6],[7]. To address
this problem, ergonomics-inspired solutions and advanced
systems with real-time human gesture recognition are nec-
essary [8].

This paper presents a vision-based human-robot col-
laboration system for inclusive manufacturing work cells.
By leveraging RGB-D information, MediaPipe-based ges-
ture tracking, and lightweight machine-learning models,
our system monitors hand movements and orientations in
real-time to infer user intent and guide robotic assistance.
Our approach has three novel contributions over conven-
tional systems:

An Intel RealSense D435 system mounted on a gim-
bal that dynamically tracks the user’s position to provide
continuous vision coverage during movement. A modular,
3D-printed gripper system that allows for on-demand end-
effector and tool customization to support different assis-
tive tasks and a real-time gesture recognition pipeline that
fuses gesture filtering, 3D hand landmark extraction, and
ensemble learning (e.g., XGBoost, Voting Classifier) opti-
mized for fast training and deployment.

The system is designed to function with varying light-
ing and environmental conditions, making it more resilient
than traditional marker-based motion capture systems[9],
[10]. It decodes multiple vision streams simultaneously to
construct a full spatial model of the workspace so that both
the robotic arm and the user can naturally interact with
shared tools and objects [11], [12].

To enable rapid prototyping of tools and task-specific
customization, the system incorporates additive manufac-
turing directly into the work cell. This allows fast creation
of specialized grippers and interfaces as the user’s needs
evolve. The robotic arm, which is equipped with inter-
changeable tools, is operated using gesture-based input,
thereby enabling object handover, manipulation, or task
assistance without requiring complex user input.

Compared to previous gesture-based human-robot col-
laboration systems, which typically base their camera con-
figuration on fixed camera setups and restricted user lo-
comotion, our solution brings three significant innovations
[13]. Firstly, the use of a gimbal-mounted RealSense cam-
era actively follows the motion of the user, providing un-
interrupted vision coverage. Secondly, the modular 3D-
printed gripper allows for quick adaptation to various as-

sistive tasks. Third, the gesture recognition pipeline com-
bines MediaPipe feature extraction with efficient ensemble
learning models that can be run in real-time. Such features
combined provide greater flexibility.

The goal of this project is to allow older workers and
individuals with motor disabilities to remain productive
contributors to industrial labor in a meaningful capacity.
Rather than replacing human workers, though, our system
augments them, enabling user control, reducing physical
effort, and opening accessible paths to ongoing workforce
participation.

2. RELATED WORKS

Vision-based gesture recognition has become a corner-
stone in human-robot interaction (HRI), offering natural
human movement to enable intuitive control. Earlier meth-
ods relied on hand-crafted features, but newer approaches
use more and more machine learning and deep learning
to give robust performance under different conditions [14].
Deep neural networks, such as 3D Convolutional
Neural Networks (CNNs) Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), have worked well in
constructing skeletal poses and gait images for action fore-
casting [15]. RGB-D sensors, namely cheap cameras such
as the Microsoft Kinect and Intel RealSense, have also
enabled real-time gesture detection using combined depth
and color streams [16], [17]. Vision-based robotic systems
for human-robot interaction have also evolved significantly,
enabling more intuitive gesture-based control through real-
time visual processing [18].

Gesture datasets from RGB-D inputs have made it pos-
sible to train and benchmark robust models in noisy or
cluttered settings. The datasets have played a central role
in the creation of real-time dynamic gesture recognition
using skeletal tracking or temporal models such as Finite
State Machines (FSMs) [19]. Applications span industrial
automation to automotive systems, where depth-based ges-
ture recognition enhances driver-vehicle interaction [20],
[21]. Machine learning played a key role in the transla-
tion of raw gesture data into semantic robot commands.
By acquiring predictive models from spatial and tempo-
ral characteristics of gestures, systems can accurately infer
user intent with flexibility [22]. These models have several
advantages, including data training without being specific
to particular users, real-time inference, and generalizing
well across users and environments. Lightweight classifiers,
such as decision trees and ensemble algorithms (e.g., Vot-
ing Classifier), are especially promising for application in
low-latency systems, where computational efficiency is of
the utmost importance. Recent work also explores multi-
modal approaches that integrate vision and tactile sensing
for robust real-time gesture and attention recognition in
human-robot interaction [23]. Though many approaches
focus on deep learning, recent work has shown that the
combination of gesture filtering with efficient feature ex-
traction (e.g., via MediaPipe or OpenPose) and classical
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machine learning can result in highly accurate yet compu-
tationally light gesture recognition systems. These meth-
ods, however, assume fixed cameras and constrained user
movement.

Robot assistive systems designed for users with mo-
tor disabilities or age-related limitations are increasingly
using vision and gesture-based interfaces for simplicity of
operation. Prior research has demonstrated the feasibil-
ity of using depth cameras and wearable sensors to enable
gesture-based assistive tasks [17]. Most such systems, how-
ever, rely on fixed camera setups or limit users to remain
within highly limited working areas.

While some assistive robot systems allow for basic cus-
tomization, few support on-demand reconfiguration of tool-
ing or real-time adjustment to user positioning. Moreover,
there remains limited integration between gesture recogni-
tion, modular end-effectors, and camera motion capable of
tracking mobile users in dynamic environments.
Our work addresses these gaps by introducing a gimbal-
mounted depth camera system, 3Dprinted modular tooling
and a training gesture recognition framework for adapt-
able, inclusive smart work cells. These technologies overall
enable more intuitive and effective human-robot collabo-
ration, particularly for older adults and individuals with
disabilities, by supporting adaptive and responsive robot
assistance in task execution [24].

Relative to past work that relied on fixed tooling se-
tups and static cameras, our system stands out in its com-
bination of gimbal-based user tracking, modular tooling
through 3D printing, and an ultra-light machine learning
pipeline for real-time gesture detection. These features in
combination enable greater flexibility and usability, par-
ticularly for dynamic and unstructured user workspaces
for individuals with physical disabilities. Recent studies
in adaptive HRI [25], multimodal user gesture recognition,
and real-time assistive robotics increasingly call for flexible,
lightweight systems, which this research explicitly targets
[26], [27].

3. SYSTEM OVERVIEW

This chapter provides an overview of the system at the
heart of our research to produce an efficient workspace.
It outlines how the various systems and subsystems that
make up our research collaborate in a way that enhances
usability and efficiency.

3.1. Work cell concept

The assistive work cell is designed to mimic a typical
office setting, with a desk and a computer as the central
focus. To increase functionality, a different support sys-
tem for tool placement has been implemented and with
it, the robotic arm can be used productively. The de-
sign of the work area is discussed in Fig. 1. A gimbal-
like depth camera is constantly monitoring the movements

Figure 1: Workcell layout

Figure 2: Robotic arm station

of the user in a way that ensures the user’s actions re-
main within the camera’s field of view. The system makes
recording human movement more precise so that the sys-
tem can interpret the gestures of the user better and trans-
mit this to the robotic arm for execution. The hardware
system consists of an Intel Core i7 CPU, NVIDIA GeForce
GTX Titan X GPU, and Ubuntu 20.04.6 operating sys-
tem. The configuration is consistent with human-centered
robotic workspace practices, with the aim of intuitive and
ergonomic collaboration [28].

3.2. Robotic arm station

Fig. 2 illustrates a tool station with sections containing
various tools that are mounted on grappling hooks and a
robotic arm station. This is an effective and efficient way of
utilizing space and obtaining tools in time. It particularly

132



CNSER Int. J. Computer Vision Signal Process.

Figure 3: Gripper model

proves to be effective in work cell spaces where the robotic
arm should have easy access to other tools.

The robotic arm station features the Universal Robots
UR3e arm due to its precision, reliability, and fine manip-
ulation capability. The UR3e has a total of six joints, a
payload of 3 kg, a reach of 500 mm, and a weight of 11.2
kg. The robot arm is placed on the left side of the user to
facilitate easy access to the tool and efficient task accom-
plishment.

For user choice and work processes, two functioning
modes are in place: Manual mode using a control pad and
an automatic Gesture Recognition mode.

Manual Control: The Robotic arm is controlled with
a pad with direct, easy change adjustments in real-time.
Implication is the offering of a natural and easy-to-read
interface for facilitating the fine control of instructions.

Automatic Gesture Reading: This mode utilizes
a vision-based approach to the interpretation of human
gesture [23]. Integrated with depth camera feedback and
robot motion, machine learning algorithms read and pre-
dict what the user wants to do to allow human-robot in-
teraction.

3.3. Gripper units

One of the most notable aspects of this research is the
gripper that has been specially made, which was created
using 3D printing for modularity and flexibility to be able
to do a variety of tasks [29]. It is easy to remove and install,
allowing effortless switching between tasks. 3D printing
makes it of immense advantage with the ability to quickly
produce and adjust the design incrementally. A 3D print
station, in the back of the robot arm, allows rapid replace-
ment of failed parts or new design generation and testing.
Flexibility through adaptation allows increased versatility
in using the system for many different applications, to meet
different users’ needs, and various activities. As shown in
Fig. 3, the standard gripper has a short extension on the
tip for disengaging toolboxes from grappling hooks.

4. HUMAN GESTURE RECOGNITION

This research aims to develop vision-based human ges-
ture identification based on the analysis and tracking of
human body movement. This is acquired by real-time head
orientation, facial pose, and hand gesture monitoring to as-
certain user activity. Converting camera image data into
usable coordinate systems for use in robotic systems rep-
resents a key application of this process, and it involves
top-down mathematical computation. Furthermore, the
sole reliance on visual data in machine learning algorithms
might lead to diminished accuracy, especially in ambiguous
or complex situations.

For such challenges to be addressed, in the current re-
search work, Intel® RealSense� Depth Camera D435 is
utilized for video capture, supported by the MediaPipe
Holistic model. Through this combination, a holistic anal-
ysis of human facial behavior, body pose, and hand ges-
tures can be made. MediaPipe Holistic extracts significant
key points from images, enabling accurate interpretation
of human pose and gesture. Such key points provide sig-
nificant information on body location and movement, en-
abling the system to be more efficient in analyzing human
motion. Fig. 4 illustrates the overall system of the as-
sistive robotic arm. The first step is to acquire human
gesture data by using the depth camera. The data, after
being acquired, is processed and analyzed in order to cre-
ate machine-learning models that are capable of decoding
human gestures. These models, in return, assist in guiding
the robotic arm in determining human gestures.

The MediaPipe Holistic model provides a real-time out-
put of 543 landmarks: 33 for body pose, 468 for facial
expressions, and 42 for hand gestures (21 for each hand).
The landmarks are connected by lines that draw the body
structure, face, and hands in real-time.

In [13], a human gesture prediction system using a full-
body dataset and several training models are presented.
Despite the accuracy of the system being good, it must
employ a big dataset, leading to long data acquisition, long
training duration, and huge computational overhead. The
system also requires the camera to remain stationary at

Figure 4: Workflow of the system
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the same location where data collection was done for it to
be accurate. To get around these constraints, our work fo-
cuses on eliminating redundant information and retaining
the most informative features. Since most productive be-
haviors are achieved through the hands, our system focuses
on hand gesture data, loading filters to recognize informa-
tive data.

The system initially automatically picks an available
RealSense camera and sets it up to stream high-definition
depth and color data. Real-time preprocessing techniques,
such as horizontal flip and Gaussian blur, enhance data
quality before landmark detection. MediaPipe is used to
obtain hand landmarks from each frame. Due to variability
in hand size and camera distance in users, raw landmark
coordinates may not be reliable. For this, the wrist is set
as the origin point, and angle-based features are calculated
to account for hand size variation.

Hand orientation—quantified in terms of roll, pitch,
and yaw—is computed by constructing a rotation matrix
from vectors between selected hand and arm landmarks,
and then transforming into Euler angles. Gestures are
tagged, and corresponding information is stored in a CSV
file. Hand motion is tracked in 3D by the system, with
the X-axis representing horizontal movement, the Y-axis
vertical location, and the Z-axis depth in camera space. 12
gestures were recorded over 76,296 frames.

In the approach of [13], various machine learning clas-
sifiers were tried out, including logistic regression, ran-
dom forest, gradient boosting, support vector classifier,
and ridge classifier. Voting Classifier with hyperparame-
ter tuning had slightly higher accuracy than single mod-
els, albeit at the cost of increased training time. To reduce
computational load and maintain or improve performance,
our strategy incorporates K-Means clustering to divide the
dataset into 100 groups and eliminate duplicate samples.
Correlation analysis also helps in identifying important fea-
tures and reducing dimension. Machine learning pipelines
integrate StandardScaler feature scaling and Ridge Clas-
sifier, XGBoost, and Voting Classifier classifiers. Training
optimization techniques such as K-Means clustering and
feature correlation analysis reduce data redundancy and
training time.

System performance in gesture recognition is graphed
in the format of a confusion matrix in Fig. 5. After suc-
cessful model validation and training had been conducted,
the system was integrated with a robotic arm platform.
With such an integration, the robot can classify gestures
and respond accordingly based on them, achieving real-
time detection and user intent response.

To facilitate dynamic situations, an Intel® RealSense�
Depth Camera D435 was mounted on a gimbal stabilizing
system to allow the camera to continuously track the user
even while roaming in the workspace. This enables a sta-
ble field of view and reduces the likelihood of losing gesture
tracking due to user movement. The gimbal pan-tilt fea-
ture enhances overall system stability and accuracy during
dynamic situations. The camera-gimbal assembly is shown

Figure 5: Confusion Matrix

Figure 6: Depth camera unit

in Fig. 6.
RealSense camera captures RGB and depth at 640Ö480

pixels at 30 fps. Depth stream is utilized to enable depth-
based perception, which enables hand tracking, occlusion,
and gesture. Raw depth values are converted to real-world
metric values using the depth scale factor of the camera.

Gesture recognition is stabilized using a Kalman filter
over the 3D landmark coordinates. A gimbal-mounted Re-
alSense camera enhances robustness by maintaining focus
on the user’s hand movements even during motion, reduc-
ing tracking failures. The gimbal mechanism is constructed
with two high-torque 20 kg servo motors (270-degree rota-
tion) for pan and tilt motion. They are powered through an
Arduino UNO with the StandardFirmata protocol, which
provides real-time serial control by a host system. Servo
motion ranges are restricted to avoid overextension and
offer safety. A depth-based occlusion detection system is
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also implemented. Objects within 0.5 meters of the cam-
era are labeled as potential occlusions. Upon detection, a
visual alert is presented, requesting the user to reposition,
thereby guaranteeing gesture visibility.

The robotic arm is controlled through the Robot Op-
erating System (ROS), employing ”rospy” to facilitate in-
tercommunication between the human gesture recognition
module and robotic arm control system. The driving mech-
anism to manipulate the robotic arm is done utilizing the
”moveit” library to manage individual joint movement to
bring it to a specific destination. Arduino UNO controls
the gripper section by using the Stand Firmata library,
which makes it possible for Arduino to be coded in Python.
The motor used in the gripper unit is a 20 kg servo mo-
tor with 270-degree control. The example of the system is
discussed in Fig. 7. The program detects user gestures in
real-time. In this case, it recognizes the gesture as ”Bot-
tle”, which is a command instructed to the robotic arm to
remove an empty bottle off the worktable, which, in this
case, the robotic arm will carry a bottle and move it into
the trash zone.

5. EXPERIMENT

The experimental setup for the validation of the perfor-
mance of the system in detecting human gesture and con-
trolling the robotic arm is illustrated in Fig. 8. Systematic
experiments were conducted to evaluate the system’s abil-
ity to accurately interpret human gestures and translate
them into correct robotic movements.

To ensure robustness and avoid spurious activations, a
gesture confidence threshold of 80 was set. This is a fil-
tering technique that discards low-confidence predictions,
normally produced by the system when attempting to in-
terpret non-gesture or indeterminate movement. To fur-
ther enhance reliability, the system conducts five consecu-
tive gesture tests. The robot arm receives a command only
when all five tests produce the same result and are above
the confidence level.

Figure 7: Gesture recognition and robotic response in the ’Bottle’
scenario

Figure 8: Test bench used for evaluating the system

Fig. 9 depicts pre-defined gesture patterns used in ex-
periments.

Figure 9: Gestures used in the experiment
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Figure 10: User Accuracy for Human Gesture Reading

The gestures were chosen deliberately for testing the
system over a large range of real-world usage scenarios
with different body postures, motion profiles, and inter-
action distances. The subjects were also asked to move
about freely within the workspace, intentionally testing the
gimbal mechanism to evaluate its performance for accurate
tracking under dynamic situations.

The tests involved five healthy male subjects between
22 and 32 years of age. The current experiment was con-
ducted with healthy male participants to validate the sys-
tem’s basic operation and safety. The system targets older
adult individuals and disabled individuals, but this proof-
of-concept test is just a beginning. Trials with older adults
and motor-impaired persons will be part of subsequent ex-
periments to confirm the effectiveness and usability of the
system in our target population. The subjects were ori-
ented with the experiment’s purpose, safety procedures,
and data confidentiality practices before the tests were car-
ried out.

Most significantly, three out of five subjects (Subjects
2, 3, and 5) did not participate in data collection for train-
ing. This made it possible to evaluate the capability of the
system to generalize across new users. User Accuracy in
the experiment can be seen from Table I and Fig. 10. Each
subject performs each task 10 times. Recognition perfor-
mance was satisfactory across all the subjects, regardless of
their orientation and location in front of the camera. This
success is credited largely to the training method, which
employed a broad range of hand positions, angles, and dis-
tances to build a robust model.

Performance results show good recognition. Average
accuracy exceeded 90% across all gestures and subjects.
Misclassifications primarily occurred between visually sim-
ilar gestures (e.g., ’Three’ vs. ’Bottle’ or ’Give pen’ vs.
’Give screwdriver’) but were reduced using gesture verifi-
cation.

Average gesture recognition response times are quite
difficult as they vary from each person, where they position

themselves or how fast they move their body, which made
user accuracy a more relevant metric than response time.

Notably, Subject 3, who had a smaller body size than
others, showed no detectable decline in recognition ac-
curacy. This further suggests that the system appropri-
ately generalizes between users with varying physical char-
acteristics. Moreover, performance was significantly im-
proved utilizing the gimbal-based camera tracking system
by maintaining focus on the user’s hand movements for
guaranteed gesture detection even during motion.

As a whole, experimental results validate the system’s
ability in gesture recognition and robotic arm actuation
for different user conditions, affirming its viability in real-
world applications of human-robot collaboration.

Future work will extend testing to target users, includ-
ing older adults and individuals with disabilities, to vali-
date usability across a broader population.

6. CONCLUSIONS

This research was intended to develop a system that
can analyze the gestures of humans to enable a robotic
arm to provide services for users, especially those who are
physically disabled or older adults, to perform work-related
tasks. With a focus on real-world work situations, the
system is developed to improve the efficiency of tasks and
provide more autonomy for physically disabled users.

One of the most distinctive features of the system is the
modular, 3D-printed gripper unit mounted on the robotic
arm, showcasing both the versatility and the practicality
of the platform. The addition of a gimbal mechanism also
makes the system more robust by minimizing tracking er-
rors due to user motion or position shifts.

The experimental results indicate that some user train-
ing is required for optimal system performance. This in-
cludes acclimatization to the gesture vocabulary, learning
optimal positioning, and understanding the range of oper-
ations that the robotic arm can perform. While prelimi-
nary tests with healthy participants demonstrate promis-
ing performance, the system has yet to be validated with
older adults and individuals with disabilities, the intended
user population. Future work will involve trials with di-
verse participants to assess real-world usability and inform
further refinements.
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Table 1: User Accuracy for Human Gesture Reading

Class
Test Subject

Subject1 Subject2 Subject3 Subject4 Subject5
One 100 100 100 100 100
Two 100 100 100 100 100
Three 100 90 90 100 100
Four 100 100 100 100 100
Five 100 100 100 100 100
Hold 100 100 100 100 100
Thumb up 100 90 90 100 100
Need assist 90 90 80 100 100
Give pen 90 100 90 80 100
Give screwdriver 90 90 90 90 100
Give Tape 100 90 90 90 100
Bottle 90 90 90 100 80
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