International Journal of Computer Vision and Signal Processing, 15(1), 112-119(2025) ORIGINAL ARTICLE

Optimizing Task Offloading in Fog Computing with
HAGSA-NS: A Hybrid Adaptive Gravitational
Search Algorithm

Md. Emran Biswas?, Tangina Sultana?, Md. Delowar Hossain', Mst. Khadeja Sarker?, Ga-Won Lee?, Eui-Nam Huh?

L Department of Computer Science and Engineering, Hajee Mohammad Danesh Science € Technology University, Dinajpur 5200,
Bangladesh.

2 Department of Electronics and Communication Engineering, Hajee Mohammad Danesh Science & Technology University, Dinajpur 5200,
Bangladesh.

3 Department of Computer Science and Engineering, Kyung Hee University, Yongin-si 17104, Korea

* Correspondence: johnhuh@khu.ac.kr

Abstract

The swift proliferation of Internet of Things (IoT) devices and the de-

mand for minimal latency applications has rapidly increased the incor-

poration of fog computing alongside traditional cloud computing. Nev-

ertheless, efficient task offloading in fog settings remains a significant 1cvse
issue due to variable network conditions, resource constraints, and strin- o
gent quality-of-service (QoS) requirements. This research proposes a

novel Hybrid Adaptive Gravitational Search Algorithm with Neighbor-

hood Search (HAGSA-NS) to enhance task offloading in fog computing,

solving these issues. HAGSA-NS integrates the global exploration ca-

pabilities of the Adaptive Gravitational Search Algorithm (AGSA), the ISSN: 2186-1390 (Online)
diversity-enhancing features of Differential Evolution (DE), and the local http://cennser.org/IJCVSP
exploitation benefits of Neighborhood Search (NS). This hybrid approach

enables effective and efficient task allocation, even in highly dynamic and

resqurce-constrained environments. The effectiveness of HAGSA-NS is
evaluated against two prevalent optimization methods, Particle Swarm

Optimization (PSO) and Genetic Algorithm (GA), using two primary
metrics: ideal fitness values across iterations and average computational
latency. Experimental results demonstrate that HAGSA-NS consistently
outperforms PSO and GA, achieving reduced fitness values and signif-
icantly decreased delays. HAGSA-NS achieves an average delay of 1.0,
whereas PSO exhibits a delay of 4.234 and GA demonstrates a delay of
1.791. These findings highlight the benefits of HAGSA-NS in terms of
solution quality and computational efficiency, positioning it as a viable
strategy for work offloading in fog computing environments.

Keywords: Fog Computing, Task Offloading, HAGSA-NS, Particle Article History:
Swarm Optimization (PSO), Genetic Algorithm (GA), Internet of Received: 1 0/4/2025
Things (IoT), Quality of Service (QoS), Computational Efficiency, Revised: 13/7/2025

RS : Accepted: 1/11/2025
Delay Minimization, Resource Allocation Published Online: 23,/11/2095

© 2012, IJCVSP, CNSER. All Rights Reserved

1. INTRODUCTION

Email addresses: emran.hstu19990gmail.com (Md. Emran The instantaneous proliferation of Internet of Things
Biswas®), tanginaChstu.ac.bd (Tangina Slfltanﬁ% (IoT) devices andThe growing requirement for minimal la-
delowarkhu.ac.kr (Md. Delowar Hossain'), tency,outstanding performance applications have necessi-
bristykhadeja@gmail.com (Mst. Khadeja Sarker<), § . X i
gawonGkhu.ac.kr (Ga-Won Lee3), johnhuh@khu.ac.kr (Eui-Nam tated the evolution of traditional cloud computing archi-
Huh?) tectures [1]. Fog computing has emerged as a feasible op-

tion, situating processing resources nearer to The edge of

CNSER

Int. J. Computer Vision Signal Process.

the network, thereby decreasing latency and bandwidth use
[2]. The efficient allocation and offloading of tasks in fog
computing settings present difficulties because to the net-
work’s fluctuating nature, limited resources, and rigorous
quality-of-service (QoS) requirements [3].

Task offloading, the transfer of computational respon-
sibilities from end-user devices to fog nodes, is an essential
aspect of fog computing. The primary aim is to mini-
mize delays, optimize load distribution, and ensure reli-
able task execution while adhering to constraints such as
deadlines and resource availability. It optimizes resource
usage by transferring computationally intensive tasks from
resource-constrained devices to more powerful cloud or fog
nodes, which improves overall system performance. Of-
floading reduces latency by enabling faster processing at
the edge in fog computing, minimizing the distance data
needs to travel. Additionally, it enhances energy efficiency
by conserving battery life on local devices, which is cru-
cial for mobile and IoT applications [4]. Cloud comput-
ing further supports scalability, allowing the system to dy-
namically handle varying workloads and large-scale appli-
cations. Overall, task offloading in these paradigms results
in cost savings by reducing the need for local infrastructure
and leveraging the capabilities of external resources [5].

Classical optimization approaches, such as Genetic Al-
gorithms (GA) [6] [7] and Particle Swarm Optimization
(PSO) [8] [9], have been extensively employed in the con-
text of job offloading, owing to their ability to search for
optimal or near-optimal solutions in large, complex search
spaces. These methods have demonstrated considerable
success in many applications, leveraging their stochastic
nature to explore diverse solutions and converge to ef-
fective results. However, despite their advantages, these
techniques often encounter challenges when it comes to
balancing exploration with the refinement of existing so-
lutions in dynamic, ever-changing environments. Specif-
ically, the inherent trade-off between searching for new,
potentially better solutions and optimizing already iden-
tified ones can lead to suboptimal outcomes, particularly
in scenarios where the problem landscape is highly vari-
able or uncertain. As a result, these classical methods may
struggle to maintain consistent optimal performance, espe-
cially when applied to real-world, complex job offloading
scenarios where system conditions and requirements are
continuously evolving.

We present HAGSA-NS, a Hybrid Adaptive Gravita-
tional Search Algorithm with Neighborhood Search, to ad-
dress these challenges in efficient work offloading inside
fog computing. HAGSA-NS amalgamates the global ex-
ploration proficiency of the Adaptive Gravitational Search
Algorithm (AGSA) with the local exploitation efficacy of
Neighborhood Search (NS) and the diversity-enhancing char-
acteristics of Differential Evolution (DE). This hybrid model
ensures effective and efficient task allocation, particularly
in highly dynamic and resource-constrained fog circum-
stances.

The major contributions of this work are as follows:

113

e We offer HAGSA-NS, a new hybrid optimization
approach that amalgamates AGSA, DE, and NS for
the enhancement of work offloading in fog computing.

e We propose a dynamic adaptation technique in AGSA
to improve convergence and avoid local optima.

e We incorporate Neighborhood Search to enhance lo-
cal exploitation, enabling more rapid and accurate
job allocation.

e We assess the efficacy of HAGSA-NS using compre-
hensive computations, demonstrating its superiority
over prominent methods such as GA and PSO in
terms of delay reduction, load allocation, and reli-
ability.

This document is structured as follows: Section IT ex-
amines pertinent literary works. Section III comprehen-
sively explains the process. Section IV presents the results,
while Section V closes the study.

2. RELATED WORKS

Task offloading in fog computing has garnered substan-
tial attention in recent years because of its ability to alle-
viate the limitations of traditional cloud computing. This
section examines the existing research on task offloading,
optimization techniques, and their applicability inside fog
computing systems.

2.1. Task Offloading in Fog Computing

The task offloading challenge in fog and edge comput-
ing environments has been extensively examined in recent
years, with many studies concentrating on different opti-
mization methodologies, issues, and solutions. Alasmari
et al. (2023) [10] focus on improving energy accuracy and
network efficiency in fog computing by employing multi-
classifiers for job offloading in resource-constrained envi-
ronments. Their findings underscores the importance of
enhancing job offloading techniques to conserve energy and
optimize network performance in fog situations. Goel et al.
(2023) [11] present a comprehensive examination of work
offloading and load balancing strategies in fog computing,
clarifying key optimization techniques and emphasizing re-
cent advancements in the field. Their investigation evalu-
ates various load balancing approaches and continual de-
mands for improvement in fog systems. Wei et al. (2023)
[12] introduce a trading-based framework employing Multi-
Agent Generalized Advantage Estimation (MA-GAC) for
task offloading in fog computing for vehicles. Their tech-
nology, focused on deep reinforcement learning, seeks to
improve system welfare and maximise resource allocation,
particularly inside vehicle networks. Wu et al. (2023) [13]
provide a delay-sensitive job offloading technique employ-
ing Semi-Markov Decision Processes (SMDP) for Vehicle-
Fog Computing (VFC)-assisted platoons. Their research
illustrates how this methodology reduces offloading delays,

CNSER

LJCVSP, 15(1),(2025)

especially in vehicle platoons, yielding encouraging out-
comes from simulation-based validation. Tran-Dang and
Kim (2023) [14]study fog computing systems’ dynamic col-
laborative task offloading, emphasizing the reduction of
task delays through the use of parallel processing across
various fog devices. Their methodology seeks to mini-
mize job processing duration while preserving low compu-
tational complexity. Premalatha and Prakasam (2024) [15]
provide the technique for IoT-Fog networks called Opti-
mal Energy-efficient Resource Allocation (OEeRA), which
improves energy use and job offloading efficiency through
Fault Isolation Recovery (FIR) and Multi-Class Resource
Allocation (MCRA), resulting in significant performance
enhancements. Rezaee et al. (2024) [16] examine workload
offloading and management strategies in IoT-Fog-Cloud
ecosystems. Their article emphasizes the significance of
fog computing in handling the substantial data flood from
ToT devices, mitigating network congestion, and enhanc-
ing resource allocation in fog nodes. Jain and Kumar
(2023) [17] provide a Deep Reinforcement Learning (DRL)
methodology for job offloading in IoT-Fog-Cloud architec-
tures. Their methodology attains a 96.23% task deadline
fulfillment rate and an 8.25% enhancement in performance,
demonstrating the efficacy of DRL in optimizing job of-
floading in fog situations. Mahapatra et al. (2024) [18]
provide a six-layer architecture that incorporates cloud,
fog, edge, mist, dew, osmotic, and hybrid computing. They
investigate the interaction of these paradigms to enhance
work scheduling, load balancing, and resource allocation,
providing significant insights for future developments in
task offloading methodologies. P4-assisted task offloading
is proposed by Akyildiz et al. (2023) [19] for fog-based IoT
networks. The TOS-P4 strategy decreases waiting times
by a factor of 6.54 relative to conventional approaches,
demonstrating the efficacy of P4 technology in enhancing
task processing efficiency. Dash et al. (2023) [20] research
a Quality of Service (QoS) aware task offloading strategy
using Software-Defined Networking (SDN) and the Golden
Jackal optimization algorithm for useful task scheduling in
fog computing situations. Their approach improves per-
formance for latency-sensitive applications, guaranteeing
optimum task offloading under diverse network circum-
stances. Kar et al. (2023) [21] investigate offloading tech-
niques inside federated cloud-edge-fog systems, highlight-
ing the application of reinforcement learning to enhance
task offloading decisions. Their investigation offers sig-
nificant insights into conventional optimization and ma-
chine learning methodologies for IoT traffic offloading in-
side these federated systems. Akhlaqi and Hanapi (2023)
[22] present a thorough study on task offloading in Mo-
bile Edge Computing (MEC), analyzing the problems, op-
timization strategies, and algorithms employed in various
domains such as [oT, autonomous cars, and 5G. Their anal-
ysis indicates potential avenues for further investigation to
tackle the emerging issues in MEC task offloading. These
papers jointly enhance comprehension of task offloading in
fog, edge, and mobile computing settings, emphasizing crit-

ical optimization methodologies, problems, and upcoming
technologies in this field.

2.2. Optimization Algorithms for Task Offloading

In order to solve the issues of work scheduling, energy
consumption, and delay minimisation in cloud-fog comput-
ing systems, recent research has presented creative meth-
ods. Khiat et al. (2024) [23] presented the GAMMR al-
gorithm, which optimizes energy usage and reaction time,
surpassing conventional genetic algorithms. Saif et al. (2023)
[24] introduced the Multi-Objectives Grey Wolf Optimizer
(MGWO) to enhance task allocation, hence minimizing
delay and energy expenditure. Liu et al. (2023) [6] intro-
duced a genetic algorithm for efficient computation offload-
ing, enhancing resource usage. Matrouk et al. (2023) [25]
devised the MISSION technique to optimize task schedul-
ing and resource allocation, hence improving performance
metrics like as energy usage and latency. With an empha-
sis on energy efficiency, Agarwal et al. (2023) [7] devel-
oped a hybrid genetic technique for multiprocessor task
planning. In support of load balancing and quality of
experience (QoE), Baburao et al. (2023) [8] developed
a PSO-based increased dynamic resource allocation tech-
nique. Ogundoyin et al. (2023) [26] integrated Particle
Swarm Optimization and Firefly algorithms for the optimal
selection of fog nodes, enhancing resource usage and energy
efficiency. Vispute and Vashisht (2023) [9] presented the
EETSPSO algorithm for energy-efficient task scheduling,
surpassing current methodologies. Saif et al. (2023) [27]
presented the NPSO method for workload allocation, ef-
fectively decreasing energy consumption and latency while
lowering the maximum delay threshold. These studies il-
lustrate the efficacy of metaheuristic algorithms in opti-
mizing distributed computing systems, yielding enhanced
performance regarding energy consumption, latency, and
resource use.

2.3. Research Gap and Contribution

Considering advancements in work offloading and op-
timization, many problems remain unsolved. Most tech-
niques primarily focus on either global exploration or lo-
cal exploitation, but seldom both concurrently. Secondly,
the dynamic and varied attributes of fog computing en-
vironments require algorithms that can adjust to chang-
ing conditions. Ultimately, there is a lack of hybrid opti-
mization approaches specifically designed for task offload-
ing in fog computing. To address these shortcomings, we
provide HAGSA-NS, a hybrid algorithm that amalga-
mates the global exploration capabilities of AGSA, the
diversity-enhancing features of DE, and the local exploita-
tion strengths of NS. Our technique is specifically designed
for efficient task offloading in fog computing, ensuring ro-
bust performance in dynamic and resource-constrained en-
vironments.

114

CNSER

Int. J. Computer Vision Signal Process.

3. Methodology

The proposed strategy for effective job offloading in
fog computing utilizes the Hybrid Adaptive Gravitational

Search Algorithm with Neighborhood Search (HAGSA-NS).

This section describes the workflow of HAGSA-NS, as il-
lustrated in Figure 1, and explains each step in detail.

A / Delay

— s
%g $: @ Analysis

End User Tasks

N

Evaluate \

Performance
Analysis

Initialize
Population

Figure 1: Workflow of the proposed HAGSA-NS model for task of-
floading in fog computing.

3.1. Data Collection

The initial phase of the suggested technique entails data
collection, which encompasses the acquisition of informa-
tion on tasks, fog nodes, and network circumstances. Tasks
are produced by end-user devices (EUs) and defined by
properties like size, deadline, and processing needs. Fog
nodes (FNs) are defined by their processing power, failure
frequency, and geographic position. The SDN controller
functions as the primary manager, aggregating real-time
information on the network’s condition, including latency,
bandwidth, and resource availability. This data functions
as the input for the HAGSA-NS algorithm, facilitating in-
formed judgments on task offloading.

3.2. Proposed Optimization Algorithm

The essence of the suggested technique is the hybrid op-
timization process, which integrates the advantages of the
Adaptive Gravitational Search Algorithm (AGSA), Differ-
ential Evolution (DE), and Neighborhood Search (NS).
The HAGSA-NS method proceeds with the initialization
of a population of solution candidates, with every possi-
ble outcome denoting a prospective task assignment to fog
nodes. The placements and velocities of the particles in the
population are produced randomly within specified limits.
The efficacy of each solution is assessed according to the cu-
mulative delay, encompassing queuing delay, offloading de-
lay, and transmission delay. AGSA is utilized for global ex-
ploration, wherein particles (solutions) traverse the search
space influenced by gravity forces. The gravitational con-
stant G is iteratively adjusted to equilibrate exploration
and exploitation. The particles’ locations and velocities
are modified With regard to these equations:

115

pilr) =w i) + 3 T ()~),)
i
(1) = &) +r + 1),)

where ¢;(7) and &(7) represent the velocity and position
of particle ¢ at iteration 7, w is the inertia weight, N; is the
mass of particle j, and R;; is the distance between particles
i and j.

DE was integrated into HAGSA-NS to improve vari-
ation and prevent early convergence. DE uses its muta-
tion and crossover procedures on the population to pro-
vide fresh candidate solutions. Definition of the mutation
operation:

d)i = (brl +T- <¢r2 - ¢r3)a (3)

where ¢,1, ¢r2, and ¢,3 are randomly selected particles,
and T is the mutation parameter. The crossover func-
tionality combines the mutated solution with the original
solution to produce a trial solution.

Local exploitation using NS helps to refine the solutions
in a limited search area. By means of NS, which investi-
gates the neighborhood of every solution to identify better
assignments, the finest solutions from AGSA and DE are
further enhanced. This stage guarantees the convergence of
the method toward excellent answers. Algorithm presents
the pseudo-code for the HAGSA-NS algorithm. 1.

The HAGSA-NS algorithm commences by initializing
the population of N particles, where every particle x; de-
notes a prospective task assignment to fog nodes. The posi-
tions X = {z1, za,...,zn} and velocities V = {vy, va, . ..
of the particles are randomly generated within predefined
bounds. The gravitational constant G controls the strength
of gravitational forces, while the weight of inertia w bal-
ances the effect of the particle’s present velocity. The mu-
tation factor F' is used in Differential Evolution (DE) to
generate new candidate solutions. The fitness f(z;) of each
particle is evaluated based on the total delay, which in-
cludes queuing delay, offloading delay, and transmission
delay. Individual best p; and general best g solutions are
updated iteratively.. The gravitational forces F; are calcu-
lated using the masses M; of particles and the distances
R;; between them. The positions and velocities of the par-
ticles are updated using the gravitational forces, and DE
is applied to enhance diversity. Neighborhood Search (NS)
is performed on elite solutions X.;;;. to refine the solutions
locally. The gravitational constant G is adaptively updated
over iterations to balance exploration and exploitation. Af-
ter all, the best solution X* = g is returned as the optimal
task assignment.

3.8. Baseline Optimization Algorithms

The efficacy of the proposed HAGSA-NS algorithm is
evaluated using two commonly applied baseline optimiza-
tion methods: GA and PSO. The following are descriptions
of these algorithms:

7UN}

CNSER

LJCVSP, 15(1),(2025)

Algorithm 1 Hybrid Adaptive Gravitational Search Al-
gorithm with Neighborhood Search (HAGSA-NS)
Require: Population size N, number of tasks 7', maxi-
mum iterations I,,.., elite size
Ensure: Optimal task assignments X*
1: Initialize population X = {z1,z2,...,zx} and veloci-
ties V. = {v1,v2,..., 05}
2: Initialize gravitational constant G, inertia weight w,
mutation factor F’
for t =1 to I,,4, do
Evaluate fitness f(z;) for each particle z; € X
Update individual best p; and general best g
Calculate gravitational forces F; for each particle z;:

G- M;
R3Ot o
gA

7. Update velocities v; and positioning x; for each par-
ticle:
vi(t+1) =w-v(t) + F;
J?i(t + 1) = l‘i(t) + Ui(t + 1)

8: Perform mutation and crossover using DE:

fori=1to N do

10: Select random particles 1, Ty2, Tr3

11: Generate mutant v; = 1 + F - (22 — 2,3)
12: Perform crossover to generate trial solution u;
13: if f(u;) < f(z;) then

14: Replace z; with u;

15: end if

16: end for
17: Perform neighborhood search (NS) on elite solutions

KXetite:
18: for x; € X jte do
19: Generate trial solution z = x; + Az, where Az is
a small random step
20: if f(a:;) < f(a:l) then
21: Replace z; with z
22: end if

23: end for
24: Update gravitational constant G:

G=G exp(—a-t/Ina)

25: Integrate global best solution ¢ into population X
26: end for
27: return Global best solution X* =g

3.83.1. Genetic Algorithm (GA)

GA [28] is a population-based optimization technique
inspired by the process of natural selection. It evolves a
population of candidate solutions over multiple generations
using genetic operators such as selection, crossover, and
mutation The crossover operation is defined as:

Tehild = O Tparentl + (1 - a) * Tparent2 (4)

where « is a random number between 0 and 1. After
crossover, mutation is applied to the offspring to introduce
diversity. The mutation operation is defined as:

Tmutated = Tchild + Az (5)

where Az is a small random perturbation. The GA
repetitively executes these stages till a halting threshold,
such as the highest number of generations, is satisfied. The
most effective option identified throughout the optimiza-
tion process is presented as the ideal alternative.

3.3.2. Particle Swarm Optimization (PSO)

PSO [29] is a population-centric optimization process
derived from the social behaviors shown by birds in flocks
or fish in groups. It employs a swarm of particles, with each
particle symbolizing a proposed solution. The particles
traverse the search space according to their velocity, which
is affected by each one’s optimal location and the swarm’s
global suitable value.

The velocity of each particle is updated using:

Gi(T+1) = w- i () +K1-p1- (i =& (7)) + k2 p2- (Y —&i(7))
(6)
where ¢;(7) represents the velocity of particle ¢ at iter-
ation 7, w is the inertia weight, x1 and x5 are the cognitive
and social acceleration coefficients, p; and ps are random
values between 0 and 1, v; is the personal best position of
particle 7, and ~y is the global best position of the swarm.
The position of each particle is updated using:

&(’7’ + 1) = fi(T) + ¢1(T+ 1) (7)

The PSO method incrementally modifies the velocities
and placements of the particles until a termination require-
ment, such as a maximum iteration count, is satisfied. The
global optimal outcome g is provided as the best solution.

8.4. Simulation Setup
This study evaluates the performance of three meta-

heuristic algorithms—Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), and Hybrid Adaptive Gained Simu-

lated Annealing with Neighborhood Search (HAGSA-NS)—for

solving the task scheduling problem in a distributed com-
puting environment. Each algorithm is simulated using
a uniform experimental setup consisting of a population
size of 110 and a maximum of 600 iterations. The evalu-
ation is carried out based on three key performance met-
rics: Best Fitness, Average Delay, and Resource Utilization
Rate. The dataset comprises dependent tasks with asso-
ciated execution times, deadlines, and a fixed number of
resources.

116

CNSER

Int. J. Computer Vision Signal Process.

3.4.1. Best Fitness

The Best Fitness metric (fuest) evaluates the quality of
the optimal solution obtained by an algorithm during the
simulation. It corresponds to the minimum fitness value
observed across all generations and reflects how well the
algorithm minimizes the objective function.

min
ie{1,2,...,I}

fbcst = f(Sz) (8)

Here, I is the total number of iterations, f(S;) repre-
sents the fitness value of the best individual at iteration
i, and S; denotes the solution (i.e., task schedule) at that
iteration. A lower fpest implies a better-performing algo-
rithm. This metric is visualized using convergence curves
over iterations to illustrate the search behavior and con-
vergence stability.

3.4.2. Average Delay

The Average Delay metric (D) quantifies the average
delay for tasks that miss their deadlines. It is an important
indicator of schedule quality in time-sensitive applications.
Only tasks with delays (F; > D;) are considered.

1

D:EZ(FZ.—DZ-), where L ={r; | F; > D;} (9)

TEL

In this equation, F; is the finish time of task 7, D;
is its deadline, and L is the set of delayed tasks. The
metric penalizes schedules with many delayed tasks or large
delays, providing insight into the temporal efficiency of the
scheduling strategy.

All metrics were calculated after the final iteration us-
ing the best solution found by each algorithm. This setup
ensures a fair and consistent comparison across GA, PSO,
and HAGSA-NS under identical experimental conditions.

4. Results

In this section, we present a comprehensive analysis of
the performance and delay characteristics of the proposed
algorithm in comparison with PSO and GA. The evalua-
tion is conducted based on two key metrics: the best fit-
ness values achieved over iterations and the average de-
lay incurred by each algorithm. Comparative graphs are
applied to represent the results, offering insights into the
algorithms’ effectiveness and efficacy.

4.1. Performance Comparison

The performance of the algorithms is evaluated by an-
alyzing the convergence behavior and the quality of the
solutions obtained over iterations. Figure 2 illustrates the
best fitness values achieved by HAGSA-NS, PSO, and GA
across iterations.

The HAGSA-NS algorithm that has been proposed ex-
hibits superior performance, consistently attaining lower

117

fitness values than GA and PSO. This suggests that it is ca-
pable of effectively balancing exploration and exploitation,
which allows it to converge to superior solutions and avoid
local optima. Although PSO is competitive, it exhibits a
propensity to reach a plateau at an earlier stage, which
implies that convergence may occur prematurely in spe-
cific circumstances. Conversely, GA demonstrates delayed
convergence and higher fitness values, which underscore its
limitations in managing intricate optimization landscapes.
The findings emphasize the efficacy of HAGSA-NS in at-
taining higher-quality solutions and faster convergence.

Comparison of Algorithm Performance

HAGSA-NS
— GA
97000 — PSO

96000

95000

Best Fitness

94000

2000 L\\‘ﬁ\ﬂ\i

92000

0 100 200 300 400 500 600
Iteration

Figure 2: Comparison of Algorithm Performance: HAGSA-NS, PSO,
and GA. The plot shows the best fitness values over iterations for each
algorithm.

4.2. Delay Comparison

In addition to performance, the average delay incurred
by each algorithm is analyzed to evaluate their computa-
tional efficiency. The average delay values for HAGSA-NS,
PSO, and GA are 1.0, 4.234, and 1.791, respectively. Fig-
ure 3 provides a visual representation of these delay values
across the algorithms.

The computational efficiency of HAGSA-NS is under-
scored by its ability to attain the lowest average latency.
This is due to the adaptive mechanisms and neighborhood
search strategy, which enhance convergence speed and min-
imize superfluous computations. The computational over-
head of PSO is comparatively higher, as evidenced by the
maximum delay. Although GA is superior to PSO, it still
results in a longer delay than HAGSA-NS.

5. Conclusion

The HAGSA-NS, a novel optimization algorithm, was
introduced in this paper to resolve the challenges of task
outsourcing in fog computing environments. HAGSA-NS
efficiently converges to high-quality solutions by success-
fully integrating the global exploration capabilities of AGSA,

CNSER

LJCVSP, 15(1),(2025)

4.0

3.0

Delay Values

PSO
Algorithms

Figure 3: Comparison of Average Delay Across Algorithms: HAGSA-
NS, PSO, and GA. The plot shows the delay values for each algo-
rithm.

the diversity-enhancing properties of DE, and the local ex-
ploitation strengths of NS. A better balance between explo-
ration and exploitation is attained in order to achieve this.
The proposed algorithm was assessed against two state-
of-the-art optimization techniques, PSO and GA, based
on two critical metrics: the average computational latency
and the highest fitness values over iterations. The findings
indicated that HAGSA-NS consistently outperforms PSO
and GA, resulting in significantly reduced delays and de-
creased fitness values. In particular, HAGSA-NS attained
an average latency of 1.0, which is lower than the 4.234
for PSO and the 1.791 for GA. These results emphasize
the efficacy of HAGSA-NS in mitigating delays, balanc-
ing burdens, and guaranteeing the reliable execution of
tasks in dynamic and resource-constrained fog environ-
ments. HAGSA-NS is a robust and efficient solution for
task outsourcing due to its neighborhood search strategy
and adaptive mechanisms, which allow it to avoid local
optima and achieve quicker convergence.

The future work will concentrate on the extension of
HAGSA-NS’s applicability to more complex and real-world
fog computing scenarios, as well as the exploration of its in-
tegration with additional improving strategies to enhance
performance even more. The findings of this investigation
underscore the potential of HAGSA-NS as a potent in-
strument for optimizing task offloading in fog computing,
thereby facilitating the development of high-performance,
low-latency IoT applications.

Acknowledgements

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government(MSIT) (No.RS-
2023-00220631, Edge Cloud Reference Architecture Stan-
dardization for Low Latency and Lightweight Cloud Ser-
vice). Eui-Nam Huh and Md. Delowar Hossain are the
co-corresponding author.

References

[1] N. A. Angel, D. Ravindran, P. D. R. Vincent, K. Srinivasan,
Y.-C. Hu, Recent advances in evolving computing paradigms:
Cloud, edge, and fog technologies, Sensors 22 (1) (2021) 196.

[2] A. Hazra, P. Rana, M. Adhikari, T. Amgoth, Fog computing
for next-generation internet of things: fundamental, state-of-
the-art and research challenges, Computer Science Review 48
(2023) 100549.

[3] D. Alsadie, A comprehensive review of ai techniques for resource
management in fog computing: Trends, challenges and future
directions, IEEE Access.

[4] B. Mikavica, A. Kostic-Ljubisavljevic, D. Perakovic, I. Cvitic,
Deadline-aware task offloading and resource allocation in a se-
cure fog-cloud environment, Mobile Networks and Applications
29 (1) (2024) 133-146.

[5] N. K. Sehgal, P. C. P. Bhatt, J. M. Acken, Cloud computing
with security and scalability, Springer, 2020.

[6] H. Liu, Z. Niu, J. Du, X. Lin, Genetic algorithm for delay ef-
ficient computation offloading in dispersed computing, Ad Hoc
Networks 142 (2023) 103109.

[7] G. Agarwal, S. Gupta, R. Ahuja, A. K. Rai, Multiprocessor
task scheduling using multi-objective hybrid genetic algorithm
in fog—cloud computing, Knowledge-Based Systems 272 (2023)
110563.

[8] D. Baburao, T. Pavankumar, C. Prabhu, Load balancing in the
fog nodes using particle swarm optimization-based enhanced dy-
namic resource allocation method, Applied Nanoscience 13 (2)
(2023) 1045-1054.

[9] S. D. Vispute, P. Vashisht, Energy-efficient task scheduling in
fog computing based on particle swarm optimization, SN com-
puter science 4 (4) (2023) 391.

[10] M. K. Alasmari, S. S. Alwakeel, Y. A. Alohali, A multi-classifiers
based algorithm for energy efficient tasks offloading in fog com-
puting, Sensors 23 (16) (2023) 7209.

[11] G. Goel, A. K. Chaturvedi, A systematic review of task offload-
ing & load balancing methods in a fog computing environment:
Major highlights & research areas, in: 2023 3rd International
Conference on Intelligent Communication and Computational
Techniques (ICCT), IEEE, 2023, pp. 1-5.

[12] Z. Wei, B. Li, R. Zhang, X. Cheng, L. Yang, Many-to-many
task offloading in vehicular fog computing: A multi-agent deep
reinforcement learning approach, IEEE Transactions on Mobile
Computing 23 (3) (2023) 2107-2122.

[13] Q. Wu, S. Wang, H. Ge, P. Fan, Q. Fan, K. B. Letaief, Delay-
sensitive task offloading in vehicular fog computing-assisted pla-
toons, IEEE Transactions on Network and Service Management
21 (2) (2023) 2012-2026.

[14] H. Tran-Dang, D.-S. Kim, Dynamic collaborative task offload-
ing for delay minimization in the heterogeneous fog computing
systems, journal of communications and networks 25 (2) (2023)
244-252.

[15] B. Premalatha, P. Prakasam, Optimal energy-efficient resource
allocation and fault tolerance scheme for task offloading in iot-
fog computing networks, Computer networks 238 (2024) 110080.

[16] M. R. Rezaee, N. A. W. A. Hamid, M. Hussin, Z. A. Zukar-
nain, Fog offloading and task management in iot-fog-cloud envi-
ronment: Review of algorithms, networks and sdn application.,
IEEE Access.

[17] V. Jain, B. Kumar, Qos-aware task offloading in fog environ-
ment using multi-agent deep reinforcement learning, Journal of
Network and Systems Management 31 (1) (2023) 7.

118

CNSER Int. J. Computer Vision Signal Process.

[18] A. Mahapatra, K. Mishra, R. Pradhan, S. K. Majhi, Next
generation task offloading techniques in evolving computing
paradigms: Comparative analysis, current challenges, and fu-
ture research perspectives, Archives of Computational Methods
in Engineering 31 (3) (2024) 1405-1474.

[19] O. Akyildiz, I. K8k, F. Y. Okay, S. Ozdemir, A pd-assisted task
offloading scheme for fog networks: an intelligent transportation
system scenario, Internet of Things 22 (2023) 100695.

[20] B. B. Dash, S. S. Patra, R. Satpathy, B. Dash, Improvement
of sdn-based task offloading using golden jackal optimization
in fog center, in: 2023 world conference on communication &
computing (WCONF), IEEE, 2023, pp. 1-6.

[21] B.Kar, W. Yahya, Y.-D. Lin, A. Ali, Offloading using traditional
optimization and machine learning in federated cloud—edge—fog
systems: A survey, IEEE Communications Surveys & Tutorials
25 (2) (2023) 1199-1226.

[22] M. Y. Akhlaqi, Z. B. M. Hanapi, Task offloading paradigm in
mobile edge computing-current issues, adopted approaches, and
future directions, Journal of Network and Computer Applica-
tions 212 (2023) 103568.

[23] A. Khiat, M. Haddadi, N. Bahnes, Genetic-based algorithm for
task scheduling in fog—cloud environment, Journal of Network
and Systems Management 32 (1) (2024) 3.

[24] F. A. Saif, R. Latip, Z. M. Hanapi, K. Shafinah, Multi-objective
grey wolf optimizer algorithm for task scheduling in cloud-fog
computing, IEEE Access 11 (2023) 20635-20646.

[25] K. M. Matrouk, A. D. Matrouk, Mobility aware-task schedul-
ing and virtual fog for offloading in iot-fog-cloud environment,
Wireless Personal Communications 130 (2) (2023) 801-836.

[26] S. O. Ogundoyin, I. A. Kamil, Optimal fog node selection based
on hybrid particle swarm optimization and firefly algorithm in
dynamic fog computing services, Engineering Applications of
Artificial Intelligence 121 (2023) 105998.

[27] F. A. Saif, R. Latip, Z. M. Hanapi, M. A. Alrshah, S. Ka-
marudin, Workload allocation toward energy consumption-delay
trade-off in cloud-fog computing using multi-objective npso al-
gorithm, IEEE Access 11 (2023) 45393-45404.

[28] S. Mirjalili, S. Mirjalili, Genetic algorithm, Evolutionary algo-
rithms and neural networks: Theory and applications (2019)
43-55.

[29] D. Wang, D. Tan, L. Liu, Particle swarm optimization algo-
rithm: an overview, Soft computing 22 (2) (2018) 387-408.

119

