
International Journal of Computer Vision and Signal Processing, 15(1), 90-100(2025) ORIGINAL ARTICLE

Data-Driven Diagnosis: Feature Engineering and
Hyperparameter Tuning for Imbalanced
Cardiovascular Disease Classification

Ankon Karmokar∗

Department of Computer Science & Engineering

Jagannath University, Dhaka-1100, Bangladesh

Md. Manowarul Islam∗, Arnisha Akhter, Uzzal Kumar Acharjee

Department of Computer Science & Engineering
Jagannath University, Dhaka-1100, Bangladesh

IJCVSP
International Journal of Computer

Vision and Signal Processing

ISSN: 2186-1390 (Online)

http://cennser.org/IJCVSP

Abstract
Cardiovascular diseases (CVDs) have become the leading cause of death
all over the world, emphasizing the need for prediction models to ensure
accurate and timely medical interventions. In this paper, we propose a
powerful end-to-end machine learning system that incorporates feature
engineering, hyperparameter tuning, and ensemble model analysis to
enhance the predictive performance of CVD. Preprocessing encompasses
feature engineering methods designed to improve data quality, remove
outliers, cap values, and normalize data. Five additional complex mod-
els—Random Forest (87.43%), Gradient Boosting (88.07%), AdaBoost
(87.01%), XGBoost (88.11%), and LightGBM (88.02%)—are fine-tuned
using the RandomizedSearchCV innervation library. XGBoost achieves
the highest validation accuracy (88.11%) and is the most effective clas-
sifier. The proposed method offers a significant advantage over the con-
ventional one in terms of precision, sensitivity, and F1-score, which can
be applied to the screening, prevention, and clinical decision-making in
cardiovascular healthcare.
Contribution of the Paper: Key contributions are that data qual-
ity can be improved through sophisticated feature engineering, model
performance through hyperparameter optimization, and model inter-
pretability via SHAP analysis for better decision-making, especially in
sensitive areas such as healthcare.

Keywords: Cardiovascular Disease Classification, Feature Engineering,
Machine Learning, XGBoost, Hyperparameter Tuning

© 2012, IJCVSP, CNSER. All Rights Reserved

Article History:

Received: 10/4/2025

Revised: 31/7/2025

Accepted: 1/11/2025

Published Online: 23/11/2025

1. Introduction

Cardiovascular diseases cause an estimated 17.9 million
deaths annually, are the leading cause of death through-
out the world, and are responsible for more than 32% of
all deaths all over the world (World Health Organization,
2021) [1]. So, it is necessary to expect and avoid CVD

∗Corresponding author
Email addresses: b190305039@cse.jnu.ac.bd (Ankon

Karmokar), manowar@cse.jnu.ac.bd (Md. Manowarul Islam),
arnisha@cse.jnu.ac.bd (Arnisha Akhter), uzzal@cse.jnu.ac.bd
(Uzzal Kumar Acharjee)

to prevent such catastrophic consequences. Recently, ma-
chine learning (ML) methods have emerged as one of the
most effective means of medical diagnosis, as they can ex-
tract complex patterns from large datasets and facilitate
data-driven clinical decisions [2]. Several studies have used
a comprehensive pipeline that incorporates machine learn-
ing and deep learning techniques to predict cardiovascu-
lar disease. They typically involve preprocessing, extract-
ing characteristics, and using various classifiers to enhance
diagnosis determination. These ensemble methods, such
as Random Forest, Decision Trees, K-Nearest Neighbors,
XGBoost, and deep neural networks, have shown great
promise for learning from clinical datasets in cardiovas-

CNSER Int. J. Computer Vision Signal Process.

cular disease detection [3]. Tuning the hyperparameter is
crucial to improve the performance of ML models, par-
ticularly ensemble-based methods, in predicting CVD. Of
the methods mentioned, GridSearchCV and Randomized-
SearchCV are the most commonly used to fine-tune model
parameters using cross-validation approaches. They also
note that in the grid search, a full search of all settings for
fine-tuning parameters is conducted to identify the best
one. In a random search, a random sample is explored to
avoid computationally expensive constraints. An impor-
tant one is cross-validation, such as RepeatedStratifiedK-
Fold. When combined with a grid and randomized search,
the ensembles consider it significant to learn more relevant
predictive models, particularly for the intradataset appli-
cation with ensemble classifiers such as RF and AdaBoost
in cardiovascular condition detection scenarios [4].

This paper utilizes an ensemble learning model to pre-
dict CVD, incorporating hyperparameter optimization and
feature engineering. In other words, the minority class in
the imbalanced dataset is promoted to make accurate pre-
dictions. This technique, when combined with hyperpa-
rameter tuning, significantly contributes to the early diag-
nosis and intervention of cardiovascular disease by enhanc-
ing the collection of clinical data. The significant contri-
butions of this work are as follows:

� Comprehensive Feature Engineering: Encoded
categorical features, conducted chi-square testing, de-
tected outliers using Z-score and IQR methods, and
removed and capped the outliers for better data qual-
ity and model performance.

� Hyperparameter Tuning: Performed hyperparam-
eter tuning using cross-validated RandomizedSearchCV
of different classifiers to make models more efficient,
accurate, and generalized.

� Model Interpretability with SHAP: Applying
SHAP analysis to enhance model interpretability has
provided valid interpretations of feature importance,
making the decision process more understandable, es-
pecially in sensitive use cases such as healthcare.

2. Literature Review

The high mortality from cardiovascular disease and the
concern with it make these diseases good candidates for
prediction schemes in health care. Machine learning has
been successfully applied, even in the early days, to predict
heart disease in this specific domain, enabling quick but
vitally necessary care.

Mesquita and Marques (2024) proposed a machine learn-
ing model that is explainable to predict heart disease. This
approach serves to delay the model’s interpretability for
medical decision-making in health care. They also realized
the value of transparent models in medical diagnostics, al-
lowing doctors to trust the outcome [5].

Waigi et al. (2020) employed various machine learn-
ing techniques, including decision trees, to predict heart
disease based on the Kaggle dataset. The results yielded
an accuracy of 72.77%, thus shedding light on the issues
surrounding the application of machine learning to the pre-
diction of the parameters of heart disease [6].

Rani et al. (2021) developed a decision support sys-
tem to predict heart disease based on machine learning ap-
proaches, including Naive Bayes, Support Vector Machines
(SVM), Logistic Regression, and Random Forest. The use
of specific classifiers for the diagnosis of heart disease was
confirmed by this study, with Random Forest achieving an
accuracy of 86.60% [7].

Miranda et al. (2021) report the use of logistic regres-
sion and SGD for the early detection of heart disease. They
observed that, although the test results for such a sim-
ple model were preliminary, they were promising, implying
that simple models could be practical when resources are
scarce [8].

Shorewala (2021) implemented ensemble techniques in
the early detection of coronary heart disease. The results
also highlighted that ensemble methods, such as stack-
ing, should improve the accuracy and stability of coronary
heart disease prediction compared to single models [9].

Chen (2024) used the Kaggle dataset [10] using sev-
eral ML algorithms, e.g., Decision Trees, LightGBM, Ran-
dom Forest, and Logistic Regression. The model exhib-
ited that LightGBM had the highest prediction accuracy
of 76.9%. The authors emphasized the importance of data
preprocessing and feature selection to enhance model per-
formance [11].

3. Methodology

Figure 1 shows a proposed block diagram of the general
framework, the classification method, and the prediction
strategy for cardiovascular disease.

3.1. Dataset

In this paper, we employed the “heart 2020 cleaned.csv”
dataset taken from the ‘Personal Key Indicators of Heart
Disease’ dataset on Kaggle [10]. It involves 3,19,795 records
with health characteristics, including BMI, drinking behav-
ior, smoking status, physical activity, and diseases. Addi-
tionally, the data are highly imbalanced, with 91.4% of the
instances classified as ‘No’ and only 8.6% as ‘Yes’, which
complicates the prediction modeling. The data were pre-
processed as follows: missing values were checked, out-
liers were removed and capped, and attribute selection
was used to reduce the quality of the data. We believe
that because the dataset’s medical condition labels are self-
reports, they provide valuable insights for creating this
high-performance CVD prediction model. The dataset’s
limitations may affect the generalizability of the models
learned from it, given its self-reported nature, the lack of

91

CNSER IJCVSP, 15(1),(2025)

Figure 1: Block Diagram for Cardiovascular Disease Prediction

92

CNSER Int. J. Computer Vision Signal Process.

features (e.g., cholesterol, blood pressure), and the imbal-
ance of class distribution. Outliers and nulls can also af-
fect model performance. Additionally, the lack of data on
critical clinical variables and potential confounders limits
the model’s generalizability across different populations.
Lastly, the dataset’s temporal scope is limited, which may
hinder its generalizability to future predictions.

3.2. Feature Engineering

Feature engineering converts raw data into a form that
a machine learning model can utilize. This includes han-
dling missing values, encoding categorical variables, remov-
ing duplicates, and normalizing the information. These
steps work toward a cleaner, more relevant, and analysis-
ready dataset. Preprocessing helps enhance the quality of
features for machine learning models.

3.2.1. Checking Missing Values

To ensure data integrity, missing values must be ad-
dressed and accounted for. The missing value can be im-
puted, such as with the mean, median, or mode, or rows
or columns can be removed. This prevents the model from
being biased or inaccurate. Unbiased imputation guaran-
tees the consistency and trustworthiness of the data.

3.2.2. Label Encoding

Label encoding enables data transformation to a nu-
meric form, which helps prepare the dataset for machine
learning models. This method converts each category to
a unique number, which the model ingests. It is widely
used when the model does not directly support categori-
cal variables. It helps to work with categorical features in
regression and decision tree models.

3.2.3. Removing Duplicates

We remove duplicate records in the dataset to avoid
duplication and model-training bias. Duplicates may bias
analysis for some tasks, for instance, by providing a duplication-
weighted overrepresentation of identical observations. Hav-
ing distinct data points helps the model perform better,
and the system operates more efficiently. This step en-
hances the accuracy of the dataset.

3.2.4. Chi-Square Test

This test measures the independence between a cate-
gorical feature and the class. It helps in discovering sig-
nificant features that are statistically associated with the
target. Features with low p-values were considered nec-
essary for the model. This test is suggested for feature
selection and dimension reduction [12].

Table 1 shows significant associations between the other
characteristics and the target variable, with most of the p-
values close to zero.

Figure 2 shows the distribution of BMI, PhysicalHealth,
MentalHealth, and SleepTime. BMI is symmetrically dis-
tributed, with a peak around 30. PhysicalHealth and Men-
talHealth are off-balance towards lower values, suggesting

Table 1: Chi-Square Test Results

Feature Chi-Square Statistic p-value Degrees of Freedom

HeartDisease 301704.833079 0.000000e+00 1.0

Smoking 3295.579216 0.000000e+00 1.0

AlcoholDrinking 396.828516 2.699813e-88 1.0

Stroke 11429.939506 0.000000e+00 1.0

DiffWalking 11638.546630 0.000000e+00 1.0

Sex 1671.147135 0.000000e+00 1.0

AgeCategory 18912.371040 0.000000e+00 12.0

Race 1030.058381 1.866553e-220 5.0

Diabetic 9862.118540 0.000000e+00 3.0

PhysicalActivity 2642.383094 0.000000e+00 1.0

GenHealth 19421.558082 0.000000e+00 4.0

Asthma 385.984033 6.196831e-86 1.0

KidneyDisease 6138.935909 0.000000e+00 1.0

SkinCancer 2477.966898 0.000000e+00 1.0

Figure 2: Distribution of Numerical Features

fewer complaints. The clusters of SleepTime response have
several peaks, representing typical sleep durations.

3.2.5. Z-Score Normalization

Z-score Normalization normalizes the data by scaling it
to have a mean of 0 and a standard deviation of 1. This can
be useful for scale-sensitive models. Outliers are identified
and either removed or capped based on their Z-scores. It
ensures that all features have the same effect on the model.
The Z-score for each data point is calculated as [13]:

z =
x− µ

σ
(1)

where x is the data point, µ is the mean, and σ is the
standard deviation. Outliers are defined by |z| > 3, with

93

CNSER IJCVSP, 15(1),(2025)

Class 1 outliers capped at µ ± 3σ, and Class 0 outliers
removed. The threshold is chosen as |z| > 3 to capture
abnormal patterns because 99.7% of the data in a normal
distribution fall within three standard deviations from the
mean. Outliers are data points beyond this range and are
extreme, which could influence the results [14].

Algorithm 1 Outlier Handling Using Z-Score Normaliza-
tion
1: Input: DataFrame df , Target Column ‘HeartDisease’,

Threshold z threshold = 3
2: for Each Column in Numerical Columns do
3: Calculate Z-Score: z = x−µ

σ
4: if Class == 1 then
5: Cap Values Outside Bounds:

If z < −z threshold, set value to µ −
z threshold× σ
If z > z threshold, set value to µ +

z threshold× σ
6: else if Class == 0 then
7: Remove Rows with Outliers: If |z| > z threshold,

Remove Row
8: end if
9: end for

10: Output: DataFrame with Handled Outliers

Figure 3: Distribution of Numerical Features (After Z-Score)

In Figure 3, after removing outliers using Z-scores and
capping minority class outliers, the BMI distribution indi-
cates a more balanced spread. PhysicalHealth and Mental-
Health distributions also show reduced skewness as their
extreme values have been capped, while SleepTime has now
shown smoother peaks.

3.2.6. Interquartile Range (IQR)

A commonly used technique in statistics to identify and
treat outliers in a dataset is the Interquartile Range (IQR)
method. IQR is the difference between the third quartile
(Q3) and the first quartile (Q1) [13]:

IQR = Q3−Q1 (2)

In general, outliers are observations outside the lower and
upper bounds of the range.

Lower Bound = Q1− 1.5× IQR (3)

Upper Bound = Q3 + 1.5× IQR (4)

In this work, the IQR method is used in two categories
for outlier detection and removal. For one class (Class 1),
outliers are capped at low and high values, and for the
other (Class 0), they are completely discarded.

Algorithm 2 Outlier Handling Using Interquartile Range
(IQR)

1: Input: DataFrame df , Target Column ‘HeartDisease’
2: for Each Column in Numerical Columns do
3: Calculate the First Quartile: Q1 = quantile(0.25)
4: Calculate the Third Quartile: Q3 = quantile(0.75)
5: Calculate IQR: IQR = Q3−Q1
6: Define Lower and Upper Bounds:
7: lower bound = Q1− 1.5× IQR
8: upper bound = Q3 + 1.5× IQR
9: if Class == 1 then

10: Cap Values Outside Bounds for Class ‘1’:
11: If df [col] < lower bound, Set Value to

lower bound
12: If df [col] > upper bound, Set Value to

upper bound
13: else if Class == 0 then
14: Remove Rows with Outliers for Class ‘0’:
15: If df [col] < lower bound or df [col] >

upper bound, Remove Row
16: end if
17: end for
18: Output: DataFrame with Handled Outliers

Figure 4 demonstrates a symmetric BMI distribution,
with a central peak approximately at 30. PhysicalHealth
and MentalHealth are very imbalanced, with concentrated
values close to 0. SleepTime has several clear peaks that
correspond to the most common sleep times.

3.3. Data Preparation

In the data preparation stage, we split the training and
testing sets while preserving the class structure through
stratification. The features are normalized using ‘Stan-
dardScaler’, and SMOTE addresses the class imbalance by
generating artificial samples for the minority class. These
processes make the dataset balanced and uniform for model
training.

94

CNSER Int. J. Computer Vision Signal Process.

Figure 4: Distribution of Numerical Features (After IQR)

3.4. Machine Learning

Random Forest (RF): RF generates multiple deci-
sion trees trained on different random subsets of data. The
final prediction is the sum of the forecasts by individual
trees, reducing variance and increasing accuracy [7]:

ŷRF =
1

n

n∑
i=1

Ti(x) (5)

where Ti(x) is the prediction of the i-th decision tree, and
n is the number of trees.

Gradient Boosting (GB): Gradient Boosting con-
structs models in series, with each model correcting the
errors (or residual) of its predecessor. The prediction is
finally the sum of the weighted predictions of each model
[15]:

ŷGB =

M∑
m=1

αmhm(x) (6)

where hm(x) is the prediction of the m-th model, and αm

is the weight assigned to the m-th model.
AdaBoost: AdaBoost concentrates on the wrong pre-

dictions in each training round by reweighting the samples,
allowing more attention to complex samples for the next
round. The ultimate prediction is a weighted vote of the
majority [15]:

ŷAdaBoost = sign

(
M∑

m=1

αmhm(x)

)
(7)

where hm(x) is the prediction of the m-th model, αm is the
weight, and the sign function is used for classification.

XGBoost (XGB): XGBoost is a tuned model of Gra-
dient Boosting with the regularization term in the objec-
tive function, which enhances both performance and pre-
vents overfitting. The loss of the model, together with the
regularization term, is minimized [15]:

ŷXGB =

M∑
m=1

fm(x) (8)

Here, fm(x) is the prediction of the m-th model and M is
the number of models.

The objective function for XGBoost is the following:

L(θ) =

N∑
i=1

ℓ(yi, ŷi) +

M∑
m=1

Ω(fm) (9)

where ℓ(yi, ŷi) is the loss function and Ω(fm) is the regu-
larization term:

Ω(fm) = γT +
1

2
λ∥wm∥2 (10)

where γ and λ are regularization parameters, T is the num-
ber of leaves, and wm represents the leaf weights.

LightGBM (LGBM): LightGBM is a gradient boost-
ing framework that uses tree-based learning algorithms and
histogram-based algorithms that discretize continuous val-
ues in histograms, which enables us to lower memory and
train faster. In common with XGBoost, the final predic-
tion is a superposition of the outputs of multiple models
[11]:

ŷLGBM =

M∑
m=1

fm(x) (11)

Like XGBoost, LightGBM combines predictions from M
models, where fm(x) is the prediction from the m-th model.

3.5. Hyperparameter Tuning (RandomizedSearchCV)

We tuned the hyperparameters using RandomizedSearchCV
to optimize the critical parameters for each model. We ex-
plored the search across a wide range of parameters, vary-
ing by model. 10-fold cross-validation (repeated stratified
3 times) was applied to ensure a robust evaluation. The
models were evaluated according to accuracy, precision, re-
call, and F1-score, and the model with the highest accuracy
was selected [16]. In Table 2, several parameters have been
amended as follows:

4. Results and Discussion

4.1. Environment Setup

The training-testing ratio of 70-30 was used to achieve
generalizability and reliability. The implementation was
carried out on Visual Studio Code, with system configura-
tion: processor — Intel Core i5 10th-gen and 12 GB RAM
& Windows OS version 11 (64-bit). Model performance is

95

CNSER IJCVSP, 15(1),(2025)

Table 2: Hyperparameters Used in Our Models

Hyperparameter Description

n estimators Random integer [100, 500]
(number of trees)

max depth [None, 5, 10, 15, 20] (max-
imum tree depth)

min samples split Random integer [2, 10]
(samples required to split
a node)

min samples leaf Random integer [1, 5]
(samples required at a leaf
node)

learning rate Random uniform [0.01,
0.3] (learning rate)

subsample Random uniform [0.5, 1.0]
(sample fraction)

colsample bytree Random uniform [0.5, 1.0]
(feature fraction)

evaluated through various metrics, including accuracy, pre-
cision, recall, F1-score, a confusion matrix, and an ROC
curve, which provides a more detailed view of positive and
negative outcomes (true and false). Performance measures
calculated in this study are

Accuracy :

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision:

Precision =
TP

TP + FP
(13)

Sensitivity :

Recall =
TP

TP + FN
(14)

F1-score :

F1− score = 2× Precision×Recall

Precision+Recall
(15)

Overall accuracy measures a model’s ability to make
correct predictions. Precision informs about the propor-
tion of true positives among the positives known a priori.
Sensitivity or Recall—This helps to provide an estimate of
how many positives exist and have been accurately identi-
fied. The F1-score takes into account both precision and
recall, considering the impact of false positives and false
negatives.

4.2. Result Analysis

The results of the combination of ensemble algorithms
are shown in Figure 5. The best testing accuracy for XG-
Boost is 88.11%, while the training accuracy is 89.94%.
Gradient Boosting ranked second, achieving a training ac-
curacy of 92.78% and a testing accuracy of 88.07%. Ran-
dom Forest achieves a training accuracy of 92.46% and a
testing accuracy of 87.43%. LightGBM achieves training
and test accuracies of 91.16% and 88.02%, respectively.
With a bit less, AdaBoost achieves a training accuracy of
87.17% and a testing accuracy of 87.01%. These findings
highlight the high generalizability of the models, where
XGBoost records the highest testing accuracy. The five
candidate algorithms were fitted using 30-fold cross-validation,
resulting in 150 models trained on various subsets of the
data.

Figure 5: Train-Test Accuracy

The accuracy, precision, recall, and F1-score of five ma-
chine learning models (Random Forest, Gradient Boost-
ing, AdaBoost, XGBoost, and LightGBM) are presented
in Table 3 at the two-class level. The best accuracy and
F1-score for Class 1 (88.11% and 77.41%, respectively)
were achieved using XGBoost. Gradient Boosting almost
matched its accuracy at 88.07% with a significantly higher
Class 0 recall (92.26%). AdaBoost achieved high precision
in Class 0 (93.56%) and recall in Class 1 (82.38%). For
Class 0, Random Forest had the highest F1-score (91.40%).
Overall, both XGBoost and Gradient Boosting performed
remarkably well on most metrics, which indicates that they
are better suited for different applications.

Table 3: Performance Metrics of Different Algorithms (in %)

Algorithms Accuracy
Precision Recall F1-score

Class 0 Class 1 Class 0 Class 1 Class 0 Class 1

Random Forest 87.43 92.90 73.41 89.95 80.13 91.40 76.62

Gradient Boosting 88.07 91.73 77.24 92.26 75.96 92.00 76.60

AdaBoost 87.01 93.56 71.47 88.62 82.38 91.02 76.54

XGBoost 88.11 92.70 75.65 91.17 79.26 91.93 77.41

LightGBM 88.02 92.38 75.93 91.42 78.21 91.90 77.05

The bar plot in Figure 6 shows the Gini scores for Ran-
dom Forest, Gradient Boosting, AdaBoost, XGBoost, and
LightGBM. The Gini value, used as a measure of model

96

CNSER Int. J. Computer Vision Signal Process.

performance, reflects the degree of accuracy in the model
predictions (higher values imply better predictive perfor-
mance). The Gini of the Random Forest model is 0.86528,
closely followed by Gradient Boosting, with a Gini value of
0.86672. AdaBoost gives a slightly better score of 0.87278,
and XGBoost, with a score of 0.87385, is the best among
the five models. Considering its performance, LightGBM
has a Gini score of 0.86704, which falls within the upper-
middle-rank category. Each model also features a unique
color for each node, which enhances the visual separation
of the nodes in the plot. For ease of representation, each
bar has been labeled with its Gini score. The bars are thin
to produce a clean and streamlined visual representation
that highlights the small differences in model performance.

Figure 6: Comparison of Gini Coefficients across ML Models

Table 4 summarizes the performance of the XGBoost
and Logistic Regression models. XGBoost outperforms Lo-
gistic Regression in several key metrics, notably its train-
ing accuracy of 89.94% compared to 81.67% for Logistic
Regression. The ROC AUC score of XGBoost is 93.69%,
much higher than 89.57% of Logistic Regression; the Gini
score of XGBoost is 87.39%, while Logistic Regression is
only 79.15%. The optimal XGBoost parameter values are
colsample bytree = 0.571, learning rate = 0.205, and max depth
= 3; for Logistic Regression, a regularization parameter C
= 3.755 with an ‘l1’ penalty. Regarding accuracy, XG-
Boost achieves 88.11%, while Logistic Regression achieves
81.02%. The XGBoost macro and weighted F1-scores are
84.67% and 88.20%, respectively, better than the likelihood
regression scores of 77.48% and 81.82%.

Table 4: Performance Comparison (XGBoost vs. Logistic Regres-
sion)

Metric XGBoost Logistic Regression

Best Parameters
colsample bytree: 0.571,

learning rate: 0.205, max depth: 3
C: 3.755, penalty: ‘l1’

Training Accuracy 89.94% 81.67%

Testing Accuracy 88.11% 81.02%

ROC AUC 93.69% 89.57%

Gini Score 87.39% 79.15%

Macro F1-score 84.67% 77.48%

Weighted F1-score 88.20% 81.82%

Figure 7 shows the confusion matrix of the XGBoost

Figure 7: Confusion Matrix of XGBoost Model

model. This means that if the actual value was Class 0 (the
negative class), then the model correctly predicted 21,542
instances as Class 0 (true negatives), and 2,087 instances
were incorrectly classified as Class 1 (false positives). From
Class 1 (the positive class), 6,482 are Class 1 (true posi-
tives), whereas 1,696 instances are mistakenly considered
as Class 0 (false negatives). The confusion matrix indi-
cates that the model can better differentiate between the
two classes in one than in the other (Class 0 vs. Class 1).

The ROC curve of the XGBoost model is shown in Fig-
ure 8, and an excellent discriminative power is observed,
with an AUC of 93.69%. This excellent AUC demonstrates
the model’s good performance in differentiating patients
with cardiovascular disease from those without, suggesting
that it is a valuable tool for clinical prediction.

Figure 8: ROC Curve of XGBoost Model

Figure 9 presents the calibration curve for the XG-
Boost model, showing the plots of the predicted probabil-
ities against the observed fraction of positives. The curve

97

CNSER IJCVSP, 15(1),(2025)

is contrasted with a “Perfectly Calibrated” line, the line
on which predictions would lie if calibration were perfect.
The calibration of the XGBoost model suggests a moderate
correlation between predicted probabilities and observed
outcomes.

Figure 9: Calibration Curve of XGBoost Model

Figure 10 shows the decision curve analysis (DCA) for
the XGBoost model compared to two reference strategies,
“Treat None” and “Treat All”. The blue curve represent-
ing the XGBoost model exhibits a net benefit of approx-
imately zero at threshold probabilities near zero and be-
comes increasingly negative as the threshold probability
approaches 1. It is clear that the net benefit of the model
decreases at a threshold probability of about 0.7, and the
model has reduced returns at higher threshold values. The
Treat None strategy (black dashed line) maintains a net
benefit of around -70, as the same baseline treatment is as-
sumed in this setting. The Treat All strategy (red dashed
line) starts with an estimated net benefit of approximately
-70 and increases as more subjects are treated without a
corresponding model prediction, suggesting that the model
overlooks those who are treated.

Figure 10: Decision Curve Analysis of XGBoost Model

Figure 11 illustrates the importance of the features of

Figure 11: XGBoost Feature Importance via SHAP Values

an XGBoost model using SHAP values (SHapley Additive
exPlanations). The bars represent the averaged absolute
SHAP values, which indicate the average magnitude of the
effects of each feature. The outcome shows that the most
crucial feature is PhysicalHealth, followed by AgeCategory
and GenHealth. These are the features with the most sig-
nificant mean SHAP values, indicating that they provide
the most explanation. Other essential variables include
Race, SleepTime, and Sex. Meanwhile, SkinCancer, Alco-
holDrinking, and Stroke have lower SHAP values, indicat-
ing that they have less influence on the predictions of the
model.

4.3. Discussion

Table 5 compares the performance of the model with
that of other existing studies, with an emphasis on the
datasets used, the applied model, and the achieved accu-
racy. The experiments involve a variety of machine learn-
ing solutions applied to different datasets, although with a
focus on the Kaggle one used here (and also in Chen, 2024
[11]). In the present investigation, multiple ensemble mod-
els are used, and the XGBoost model yields the best ac-
curacy (88.11%), followed by Gradient Boosting (88.07%),
LightGBM (88.02%), Random Forest (87.43%), and Ad-
aBoost (87.01%). These results represent a significant im-
provement over those of Chen (2024) [11], whose high-
est reported accuracy was 76.9% using LightGBM. This
demonstrates how the present study achieves improved pre-
diction performance, particularly with ensemble modeling
that outperforms simpler models. Compared to other stud-
ies, Waigi et al. (2020) [6] achieved a 72.77% accuracy in
a Kaggle field using a Decision Tree model. Rani et al.
(2021) [7] outperformed us on all datasets using different

98

CNSER Int. J. Computer Vision Signal Process.

models, achieving the highest accuracy of 86.60% with a
Random Forest model in the UCI dataset. Miranda et al.
(2021) [8], working with the UCI dataset, achieved an accu-
racy of 80% when training a Stochastic Gradient Descent
(SGD) model. In Shorewala (2021) [9], an accuracy of
75.1% was achieved in a Kaggle dataset using the Stacking
model. Chen (2024) [11] also works with the same Kaggle
dataset as ours, although it yields inferior results, ranging
from 76% for Decision Trees to 76.9% for LightGBM. This
is in sharp contrast to the current study, as advanced en-
semble methods produce a much higher accuracy than has
ever been reported.

Table 5: Comparative Analysis of CVD Prediction (in %)

Study Dataset Model Accuracy

Waigi et al.
(2020) [6]

Kaggle DT 72.77%

Rani et al.
(2021) [7]

UCI NB 83.55%

SVM 84.46%

LR 85.07%

RF 86.60%

AB 86.59%

Miranda et al.
(2021) [8]

UCI SGD 80%

Shorewala
(2021) [9]

Kaggle SM 75.1%

Chen (2024) [11] Kaggle DT 76%

LGBM 76.9%

RF 76.7%

LR 76.8%

Current
Study

Kaggle [10] RF 87.43%

GB 88.07%

AB 87.01%

XGB 88.11%

LGBM 88.02%

5. Conclusions

This is a comparative analysis of cardiovascular disease
prediction using ensembles of machine learning algorithms,
including Random Forest, Gradient Boosting, AdaBoost,
XGBoost, and LightGBM, with accuracies ranging from
87.01% to 88.11%. Advanced feature engineering com-
bined with hyperparameter tuning reduced overfitting and

boosted the score of RandomizedSearchCV. Of the models
tested, the XGBoost model achieved the highest accuracy
of 88.11%, with consistent precision, recall, and F1-score
for the three measures. The effectiveness of ensemble mod-
els is well reflected in these results, with practical clinical
applications in predicting cardiovascular disease.

Acknowledgments

Jagannath University Research Grant supported this
research for the year 2024–2025 (UGC approved). It was
carried out in the Emerging Data Science Lab (EDSL),
Department of Computer Science and Engineering, Jagan-
nath University, Dhaka-1100, Bangladesh.

References

[1] W. H. Organization, Cardiovascular diseases (cvds) (2021).
URL https://www.who.int/news-room/fact-sheets/detail/

cardiovascular-diseases-(cvds)

[2] M. A. Naser, A. A. Majeed, M. Alsabah, T. R. Al-Shaikhli,
K. M. Kaky, A review of machine learning’s role in cardiovascu-
lar disease prediction: Recent advances and future challenges,
Algorithms 17 (2). doi:10.3390/a17020078.
URL https://www.mdpi.com/1999-4893/17/2/78

[3] A. Alqahtani, S. Alsubai, M. Sha, L. Vilcekova, T. Javed, Car-
diovascular disease detection using ensemble learning, Compu-
tational Intelligence and Neuroscience 2022 (1) (2022) 5267498.

[4] B. Y. Kazangirler, E. Özkaynak, Conventional machine learn-
ing and ensemble learning techniques in cardiovascular disease
prediction and analysis, Journal of Intelligent Systems: Theory
and Applications 7 (2) (2024) 81–94.

[5] F. Mesquita, G. Marques, An explainable machine learning ap-
proach for automated medical decision support of heart disease,
Data & Knowledge Engineering 153 (2024) 102339.

[6] D. Waigi, D. S. Choudhary, D. P. Fulzele, D. Mishra, et al., Pre-
dicting the risk of heart disease using advanced machine learning
approach, Eur. J. Mol. Clin. Med 7 (7) (2020) 1638–1645.

[7] P. Rani, R. Kumar, N. M. S. Ahmed, A. Jain, A decision support
system for heart disease prediction based upon machine learning,
Journal of Reliable Intelligent Environments 7 (3) (2021) 263–
275.

[8] E. Miranda, F. M. Bhatti, M. Aryuni, C. Bernando, Intelligent
computational model for early heart disease prediction using lo-
gistic regression and stochastic gradient descent (a preliminary
study), in: 2021 1st International Conference on Computer Sci-
ence and Artificial Intelligence (ICCSAI), Vol. 1, IEEE, 2021,
pp. 11–16.

[9] V. Shorewala, Early detection of coronary heart disease using en-
semble techniques, Informatics in Medicine Unlocked 26 (2021)
100655.

[10] K. Pytlak, Personal key indicators of heart dis-
ease, https://www.kaggle.com/datasets/kamilpytlak/

personal-key-indicators-of-heart-disease (2021).
[11] L. Chen, Heart disease prediction utilizing machine learning

techniques, Transactions on Materials, Biotechnology and Life
Sciences 3 (2024) 35–50. doi:10.62051/e054hq43.
URL https://wepub.org/index.php/TMBLS/article/view/784

[12] E. Hokijuliandy, H. Napitupulu, Firdaniza, Application of svm
and chi-square feature selection for sentiment analysis of indone-
sia’s national health insurance mobile application, Mathematics
11 (17). doi:10.3390/math11173765.
URL https://www.mdpi.com/2227-7390/11/17/3765

[13] B. P. C, How to detect outliers in machine learning (2022).
URL https://www.freecodecamp.org/news/

how-to-detect-outliers-in-machine-learning/

99

CNSER IJCVSP, 15(1),(2025)

[14] fawwazmts, Z-score and modified z-score (2024).
URL https://medium.com/@fawwazmts/

z-score-and-modified-z-score-f689296e4d3a

[15] GeeksforGeeks, Gradientboosting vs adaboost vs xgboost vs
catboost vs lightgbm, accessed: 2025-05-17 (2025).
URL https://www.geeksforgeeks.org/

gradientboosting-vs-adaboost-vs-xgboost-vs-catboost-vs-lightgbm/

?ref=asr3

[16] T. scikit-learn developers, Randomizedsearchcv (2025).
URL https://scikit-learn.org/stable/modules/generated/

sklearn.model_selection.RandomizedSearchCV.html

100

