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Abstract

Achieving coordinated motion through flexible objects remains a signif-
icant challenge in Human-Robot Interaction (HRI). This study inves-

tigates a novel application of Central Pattern Generator (CPG) con- y/ Y
trol, previously used in handshake robots, to a rope-spinning task in- ( ( Sy
volving human-robot cooperation. A real-time motion feedback system \_J/ ,\\)

was developed using Azure Kinect, enabling a robot to synchronize its International Journal of Computer
movements with human input by dynamically adjusting CPG outputs. . . . .

We evaluated the system’s performance by varying rope lengths (250- Vision and Slgnal Processing
400 ¢cm) and analyzing spatial trajectories and Euclidean distances be-

tween the human and robot end-effectors. Results showed that while ISSN: 2186-1390 (Online)
high coordination was achieved under shorter rope conditions, longer hitp://cennser.org/IJCVSP

ropes introduced increased slack and tension variability, which reduced
the robot’s tracking stability. Frequency analysis also revealed weaker
synchronization on the robot side, particularly in the vertical (Z) di-
rection. These findings indicate that vision-based feedback alone is in-
sufficient for robust adaptation to the dynamic characteristics of flex-
ible objects. The vision-based method demonstrated lower amplitude
fidelity and synchronization precision than our previous force-feedback
approach. Future work will focus on integrating multimodal feedback,
combining visual and force sensing, to improve coordination and robust-
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1. INTRODUCTION that can collaborate with humans has been increasing.

Among such efforts, research on Human Robot Interaction

In recent years, as robot technologies continue to ad- (HRI), in which robots adaptively change their behavior

vance toward real-world deployment, the demand for robots response to human movements, has gained considerable
attention in academic and industrial fields.

In HRI, accommodating individual differences, captur-

ing movement and motor characteristics variations among
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users, and adapting robot behavior have become a critical
challenge. This perspective is particularly emphasized in
assistive robotics, where user-specific factors such as physi-
cal characteristics and motion rhythms must be considered.
In our prior work, we have also investigated control strate-
gies for individual adaptation, particularly in the context
of dressing assistance robots [1, 2, 3].

Most prior studies on HRI have focused on physical
interaction through rigid bodies, targeting tasks such as
handshaking or object handovers [4, 5, 6, 7, 8]. In con-
trast, HRI involving flexible objects such as ropes or cloth
presents additional difficulties due to nonlinear and time-
varying physical properties like tension fluctuation and slack.
In particular, the realization of synchronized rhythmic move-
ment through flexible objects is an area that has not yet
been sufficiently researched.

This study focuses on rope-spinning as a representa-
tive HRI task mediated by a flexible object, in which a
human and a robot hold opposite ends of a rope and per-
form coordinated, periodic motion. To enable the robot
to adapt to the human’s motion in real time, we introduce
a biologically inspired Central Pattern Generator (CPG)
control strategy, which generates rhythmic motion with-
out relying on explicit external models. CPGs have been
widely applied in HRI tasks such as locomotion and hand-
shaking [9], but their application to interaction through
flexible objects is still limited.

Inspired by previous work on a handshaking robot, we
have studied rope-spinning robots that employ CPG con-
trol using force sensors as input [10]. However, other sen-
sory modalities have not yet been explored, and among
them, vision plays a particularly important role in sensing
human behavior. Therefore, in this study, we propose a
method in which the human hand position, obtained using
a visual sensor, is fed into the CPG to realize real-time,
coordinated rope-spinning motion. We also evaluate how
external conditions, such as rope length, affect coordina-
tion, and compare the results with force-based feedback to
investigate the potential and limitations of CPG control in
flexible-object-mediated HRI.

2. RELATED WORKS

As part of our research on cooperative motion between
humans and robots through physical contact, we developed
a handshake robot [8, 11]. Two major control approaches
have been explored for handshake robots: one based on
harmonic oscillators derived from physical models, and the
other inspired by biological systems, namely CPG control.
Harmonic oscillator systems utilize models such as spring-
damper dynamics to reproduce periodic motion, but they
often require tuning of numerous parameters, making the
control design complex [12, 13]. In contrast, CPG control
employs nonlinear oscillator networks inspired by neural
circuits found in the spinal cord of biological organisms. It
is notable for its ability to synchronize with human motion
rhythms adaptively [5].
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Among these, the Rowat-Selverston model is particu-
larly advantageous, as it can adapt its frequency to the
rhythm of an external input by learning a few parame-
ters, enabling flexible synchronization tailored to individ-
uals [14]. The Rowat-Selverston model extends the Van
der Pol relaxation oscillator to simulate neuronal behav-
ior and generate adaptive rhythmic signals. Its simplic-
ity and adaptability—requiring only two parameters to
switch between discrete and continuous outputs—make it
well suited for human-in-the-loop control applications. In
prior studies, it has been applied effectively to handshake
robots [5, 7]. Jouaiti et al. [15] further demonstrated that
the Rowat-Selverston CPG exhibits superior adaptability
to human motion compared to other CPG models used
in HRI. These characteristics make it a strong candidate
for extending rhythmic synchronization to more complex
scenarios, such as interaction through flexible objects.

While prior HRI research has predominantly focused on
physical contact and synchronization through rigid objects,
studies involving flexible objects remain limited. In partic-
ular, research addressing the nonlinear physical character-
istics of objects such as ropes is scarce. In this study, we
extend the CPG control framework previously applied to
handshake robots to rope spinning. This application allows
us to explore control challenges distinct from those in con-
ventional rigid object-based HRI. The proposed approach
is characterized by its ability to adapt to human motion
rhythms while accounting for rope tension and slack varia-
tions. Notably, it enables human-robot coordination while
tolerating the inherent slack and dynamically changing ten-
sion of flexible objects, thus representing a novel form of
HRI.

3. METHOD

In this study, we aim to realize coordinated rope spin-
ning motions between a human and a robot using the
Rowat-Selverston CPG model. An overview of the pro-
posed system is shown in Figure. 1. To adapt the robot’s
motion to the human’s movement, we employ an RGB-D
camera, Azure Kinect, which captures human motion in
real time. This motion data is input to the CPG con-
troller, enabling dynamically adaptive rope-spinning be-
havior. Specifically, the skeletal motion data of the human
swinging the rope is acquired using Azure Kinect. Based
on this input, the CPG generates robot motion. According
to the CPG’s output, the robot moves in a two-dimensional
plane, which learns to synchronize with the human’s mo-
tion. We also investigate how the coordination behavior of
the robot changes with variations in rope length and how
such changes affect the cooperative motion.

The Rowat-Selverston CPG model comprises two mu-
tually connected Rowat-Selverston neurons, which can gen-
erate periodic signals under specific conditions. These neu-
rons function as adaptive oscillators, producing rhythmi-
cally modulated signals in response to external input. The
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Figure 1: Overview of the experimental setup used for human-robot
cooperative rope-spinning. The human and robot each hold one end
of a rope while facing each other. The human motion is captured
using Azure Kinect, and the extracted skeletal data are fed into a
CPG controller to generate synchronized robot motion in real time.
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Figure 2: Schematic diagram of the Rowat-Selverston CPG model
used in this study. Two mutually inhibitory neurons form a nonlinear
oscillator network that produces stable rhythmic outputs. The model
adapts its frequency to external inputs, allowing synchronization with
human motion.

Rowat-Selverston CPG schematic diagram is presented in
Figure. 2. The two neurons are connected via mutual in-
hibitory coupling, and a stable rhythmic pattern emerges
through their interaction.

3.1. Rowat-Selverston CPG

The Rowat-Selverston model extends the Van der Pol
relaxation oscillator to simulate rhythmic neuron behav-
iors, and has been applied to Human-Robot Interaction
(HRI) scenarios such as handshake robots [16, 5, 7].

The basic dynamics of each Rowat-Selverston neuron
are described by the following equations:

TmV +V — A tanh (Z"V) +q=0 (1)
f

Tsq = —q+ o5V (2)

The variables and parameters used in these equations
are summarized below:

e V: membrane potential of the neuron, representing
its fast dynamic state.

e ¢: slow adaptive current that gradually influences the
membrane potential.

e T,,: time constant governing the rate of change of the
membrane potential V.

e T,: time constant governing the slower dynamics of
the adaptive current q.

Table 1: Initial parameters of the Rowat-Selverston neurons.
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e 0,: conductance parameter affecting the slow adap-
tive current response.

e 0¢: conductance parameter affecting the membrane
potential response.

o Aj: scaling factor that sets the saturation amplitude
of the membrane potential oscillation.

When an external forcing signal F'(t) is applied, the
membrane potential dynamics are modified as:

V=y+eF (3)
where € is the gain for external input, and y represents
the intrinsic evolution of V' without forcing.
Dynamic Hebbian learning enables the neuron to adapt
0s to match the external signal F'(t), described by:

S .4
0s = 2eE'\/TyTsA/1 + O af\/VQ——&—yQ o <l+o,
(4)

A Central Pattern Generator (CPG) is formed by mu-
tually connecting two such neurons. Each neuron receives
input from the external signal F(t) and inhibitory feed-
back wV (t) from the coupled neuron, enabling adaptive
rhythmic synchronization.

The specific parameter values used in this study, de-
termined based on preliminary experiments and previous
studies [10], are summarized in Table. 1. In the constructed
CPG, two Rowat-Selverston neurons are mutually connected,
and their membrane potentials are denoted by V; and V5,
respectively. Although Vi and V, are independent vari-
ables in principle, we assigned identical initial conditions
and identical parameter values to both neurons. Thus,
their dynamics evolve symmetrically, and for simplicity,
we denote them collectively as V' throughout this paper.

4. Experiment

This experiment investigated how variations in rope
length affect the robot’s ability to maintain synchronized
and coordinated motion with a human partner during a
rope-spinning task. Rope length was selected as the pri-
mary experimental variable, as it influences critical dy-
namic properties such as slack magnitude, required mo-
tion amplitude, and temporal delays in force transmis-
sion. These factors are essential for evaluating the robust-
ness and adaptability of the proposed CPG-based control
framework under different physical interaction conditions.

Three healthy male participants (age: 23, right-handed)
volunteered for the study. Participants were selected to
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minimize inter-subject variability in motor performance
and to focus on the influence of environmental parame-
ters. Each participant completed trials under four rope
length conditions: 250 cm, 300cm, 350 cm, and 400 cm.
These lengths were selected based on preliminary trials to
span a range from short, tension-dominated conditions to
long, slack-prone conditions, where coordination becomes
increasingly difficult.

In each trial, the participant and the robot stood fac-
ing each other, holding opposite ends of the rope, and per-
formed continuous rope-spinning movements. To ensure
consistent timing across trials and subjects, an auditory
cue at 1 Hz was provided, and participants were instructed
to match their rope-spinning rhythm to this signal as pre-
cisely as possible.

The experiment utilized a Baxter robot, with the rope
securely fixed to the end effector of its right arm. The
robot’s motion was driven by the output of a CPG model,
which received input from human motion data. Specifi-
cally, the position of the participant’s right hand was tracked
in real time using an Azure Kinect sensor placed approxi-
mately 1.5 m in front of the participant, at shoulder height.

The robot’s CPG output controlled two joints in the
Y- and Z-directions on a horizontal plane, corresponding
to the rope’s swing motion. During each trial, the human
and robot’s motion trajectories were recorded, enabling
post hoc analysis of spatial coordination, FEuclidean dis-
tance fluctuations, and frequency-domain characteristics.

Participants were instructed to maintain a relaxed pos-
ture and avoid abrupt movements, focusing on maintain-
ing rhythmic coordination. Each rope length condition was
repeated multiple times to ensure consistency, with short
breaks between trials to avoid fatigue.

This experimental setup enabled a systematic evalua-
tion of how physical parameters, such as rope length, affect
the effectiveness of vision-based CPG control in human-
robot coordination tasks involving flexible objects.

5. Results

As a representative result, Figure. 3 shows the trajec-
tories of the human hand (HH) and the robot end-effector
(RH) in the Y-Z plane during the rope-spinning task per-
formed by Subject 1. HH describes a significant circu-
lar trajectory, indicating stable periodic motion. In con-
trast, RH follows a flatter elliptical path with a smaller
radius, suggesting insufficient amplitude. Additionally, oc-
casional abrupt disturbances in the robot’s trajectory were
observed.

Figure. 4 and Figure. 5 present the time-series changes
in the Euclidean distance d,.(t) between the human and
robot end-effectors in the Y-Z plane, under rope lengths of
250 cm and 400 cm for Subject 1. Here, the Euclidean dis-
tance d,.(t) is defined using the robot end-effector coordi-

nates (y,(t), z(t)) and human hand coordinates (y, (t), z(t)),

as shown in Equation (1):
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Figure 3: Trajectories of the human hand (HH) and robot end-
effector (RH) in the Y-Z plane during a rope-spinning trial by Subject
1. The human trajectory forms a large, smooth circular path, indi-
cating stable periodic motion, while the robot trajectory is flatter
and shows irregularities, suggesting limited motion amplitude and
occasional desynchronization.

dy:(t) = V(e (t) = yn(1)? + (2 (t) = 2n(D)?  (5)

As Equation (1) defines, the end-effector distance is
computed based on the positional difference between the
human and robot at each time step. In the 250 cm rope
condition (Figure. 4), the Euclidean distance fluctuated pe-
riodically within a range of approximately 0.4m to 1.0 m,
indicating relatively stable coordination. In contrast, for
the 400 cm rope length (Figure. 5), the distance varied
more significantly, ranging from about 0.3 m to 1.4 m, with
frequent irregularities and poor periodicity.

Figure. 6 shows the distribution of Euclidean distances
between the robot and human end-effectors for Subject 1
across rope lengths of 250 cm, 300 cm, 350 cm, and 400 cm.
With a rope length of 250 cm, the median distance was
relatively small, and the overall distribution was narrow.
As the rope length increased to 300 cm and 350 cm, both
the median distance and variability grew. For Subject 1,
the distance distribution became widest at 400 cm, with
frequent outliers observed.

Figure. 7 presents the distribution of Euclidean dis-
tances for all three subjects under each rope length con-
dition. For all participants, shorter rope lengths generally
resulted in lower median distances and less variance. Con-
versely, longer ropes tended to lead to larger medians and
broader distributions, although the degree of widening var-
ied depending on the subject.

Regarding individual trends, Subjects 1 and 3 exhibited
a clear tendency for coordination to deteriorate as rope
length increased, whereas Subject 2 consistently showed
larger fluctuations across all rope length conditions com-
pared to the other subjects, suggesting overall lower coor-
dination stability.

These results highlight that although longer ropes gen-
erally made synchronization more difficult, inter-subject
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Figure 4: Temporal variation of Euclidean distance between the hu-
man hand and the robot end-effector in the Y-Z plane under a rope
length of 250 cm. The distance exhibits a stable periodic pattern
ranging from approximately 0.4 m to 1.0 m, reflecting consistent co-
ordination between human and robot.
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Figure 5: Temporal variation of Euclidean distance between the hu-
man hand and the robot end-effector under a rope length of 400 cm.
Compared to the 250 cm condition, the distance shows greater fluc-
tuations and irregularities, indicating reduced synchronization and
increased difficulty in maintaining coordinated motion.

differences in baseline coordination capability also played
a significant role.

The frequency spectra of the Y-coordinates of the hu-
man and robot end-effectors for Subject 1 are shown in
Figure. 8. A distinct peak near 1Hz is evident in the
HH data, reflecting deliberate rhythmic motion synchro-
nized to the auditory cue. Although a similar peak is also
observed in the RH data, its smaller amplitude suggests
weaker synchronization.

Figure. 9 shows the frequency spectra of the Z-coordinates.

A peak near 1Hz was also present in the HH data, indi-
cating stable vertical motion. However, similar to the Y-
direction, the RH data exhibited lower amplitude, implying
insufficient synchronization.
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Figure 6: Distribution of Euclidean distances between human and
robot end-effectors across four rope length conditions (250 cm, 300
cm, 350 c¢cm, 400 cm) for Subject 1. The results show increasing
median distance and variability with longer ropes, with the 400 cm
condition exhibiting the widest spread and the most frequent outliers.

Euclidean Distance by Subject and Rope Length

175 ,, o Rope Length [cm]
8 ° =3 250
8 © —— == 300
150 = 350
8 8 -
Tz 8
@
e
§ 100
2
a
< o075
3]
h=4
S
S 050
o
025 =
0.00
1 2 3
Subject

Figure 7: Comparison of Euclidean distance distributions across dif-
ferent rope lengths for all three subjects. Shorter ropes led to lower
medians and narrower distributions, while longer ropes caused in-
creased variation and outlier occurrences. Individual differences were
observed, with Subject 1 showing the most stable coordination.

6. Discussion

This study analyzed the motion trajectories and dis-
tance variations during cooperative rope-spinning between
a human and a robot, focusing on how rope length and mo-
tion frequency affect coordination. Analysis of the Y and
7 coordinates of the end-effector positions revealed that
while the human hand maintained a stable circular tra-
jectory synchronized to the 1 Hz auditory cue, the robot’s
trajectory exhibited significantly smaller amplitudes. This
effect was particularly pronounced as the rope length in-
creased, where the robot’s amplitude decreased further,
and delays or disruptions in its response to the human’s
motion became more apparent. Sudden irregularities in
some trajectory points were also observed.

These findings suggest that longer rope lengths lead
to more significant slack and tension variation, making it
more difficult for the robot to accurately follow the hu-
man’s motion. Sudden changes in distance were observed
repeatedly, indicating that abrupt tension fluctuations can
compromise the stability and precision of cooperative con-
trol. Additionally, tracking instability may be partly at-
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Figure 8: Frequency spectra of the Y-coordinate trajectories for the
human and robot end-effectors in Subject 1’s trial. The human tra-
jectory shows a clear peak near 1 Hz, aligned with the auditory cue.
The robot also exhibits a 1 Hz peak but with reduced amplitude,
suggesting weaker synchronization.

tributed to occlusions caused by the rope or body parts in
the Azure Kinect’s skeleton tracking, leading to unstable
feedback to the CPG and degraded robot tracking perfor-
mance.

In the inter-subject analysis, individual differences were
observed in the distribution of Euclidean distances, reflect-
ing distinct characteristics in each subject’s rope-spinning
behavior. These individual differences also influenced the
robot’s adaptive performance, highlighting the importance
of personalized response mechanisms.

The FFT analysis revealed peaks near 1 Hz in both the
Y- and Z-axis directions of the robot end-effector (RH).
However, the amplitude in the Z-axis was notably small,
indicating instability in synchronization along that axis.
This is likely due to the limited torque capability of the
robot, which is insufficient to maintain adequate rope mo-
tion. In particular, rope slack and gravity are more af-
fected by Z-axis motion, requiring greater torque than the
Y-axis. In this study, only a single joint was used for Z-
axis motion; thus, future focus will be on exploring control
strategies involving multiple degrees of freedom. Further-
more, although the CPG parameters and gain settings used
in this study were selected based on preliminary experi-
ments and prior work, it is possible that suboptimal tun-
ing contributed to the observed tracking instability. Future
work will systematically investigate the influence of differ-
ent CPG parameter settings, including output and input
gains, on coordination stability. Combined with improve-
ments in actuation and sensing, we aim to enhance the
robustness of cooperative motion through flexible objects.

In our previous study [10], real-time adaptive control
was achieved by feeding back direct tension measurements
at the robot’s end-effector to the CPG. This force-based
approach allowed immediate detection of tension fluctu-
ations and human hand movement, enabling tightly syn-
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Figure 9: Frequency spectra of the Z-coordinate trajectories for the
human and robot end-effectors. Similar to the Y-axis, a peak at 1 Hz
is observed in the human motion, while the robot’s spectrum shows
lower amplitude and irregular frequency components, particularly in
the Z-direction where gravity and slack effects are more pronounced.

chronized rhythms between human and robot, and promot-
ing high levels of coordination through physical interaction.

In contrast, this study used 3D positional data esti-
mated by Azure Kinect, feeding the human hand position
into the CPG. This visual-feedback-based approach relies
on remote sensing, which lacks direct tension information
and does not facilitate natural, physically grounded motion
guidance. Moreover, Kinect-based sensing is susceptible
to occlusion from the rope or body, leading to occasional
tracking errors or noise spikes in the coordinates, which
can compromise CPG stability.

In both force-based and vision-based input cases, in-
creased rope length exacerbated slack and tension varia-
tions, reducing the fidelity of motion transmission from
human to robot. This resulted in growing discrepancies in
motion rhythms, particularly under long rope conditions,
where the robot showed delayed response and more sig-
nificant fluctuations in Euclidean distance. These results
suggest that vision-only feedback is insufficient for rapid
adaptation to the rope’s physical properties and tension
changes.

In conclusion, although this study implemented CPG
control with visual feedback, the synchronization accuracy
and amplitude reproduction were inferior to those of the
force-feedback approach in our prior work. Integrating
force/tension information with visual feedback may be a
promising direction to achieve more stable trajectories and
higher coordination. Future work should improve visual
sensing accuracy and realize multimodal control strategies
that incorporate visual and haptic modalities.

7. Conclusion

In this study, we extended CPG control, previously
used in handshake robots, to human-robot interaction (HRI)
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through a flexible object, namely rope-spinning. We de-
veloped a system in which a human and a robot coopera-
tively perform rope-spinning, and investigated the effects
of rope length and motion rhythm on coordination. Using
the Azure Kinect visual sensor, the human hand position
was measured in real time and fed back into the CPG con-
troller, enabling the robot to generate motion adapted to
the human’s rhythmic movement.

Experimental results showed that when the rope length
was short, the robot and human maintained high coor-
dination, and the Euclidean distance between their end-
effectors fluctuated periodically in a stable manner. How-
ever, as the rope length increased, greater slack and ten-
sion variations led to reduced tracking performance in the
robot, along with larger fluctuations and abrupt changes
in Euclidean distance. Frequency analysis of the Y and Z
coordinates revealed that while the human motion exhib-
ited a clear peak near 1 Hz, corresponding to the auditory
cue, the robot’s peak was smaller in amplitude, particu-
larly in the Z-direction, where spectral irregularities were
also observed.

These results indicate remaining challenges in the robot’s
adaptability to rope length and tension variations. Com-
pared to our previous study, where force-based feedback
through direct tension sensing enabled high synchroniza-
tion and tracking accuracy, the current vision-based ap-
proach was less effective in capturing the rope’s physical
characteristics, leading to decreased amplitude and syn-
chronization accuracy. In particular, hand position sens-
ing with Azure Kinect was vulnerable to occlusion by the
rope or body parts, which often caused tracking errors or
noise, compromising the stability and precision of the CPG
control.

For future work, we plan to introduce integrated feed-
back control that combines visual information with tension
and force data at the robot’s end-effector. This multi-
modal approach is expected to enhance adaptive coopera-
tive control by accounting for the rope’s physical proper-
ties, thereby enabling more stable coordination even under
conditions of longer rope lengths and greater tension fluc-
tuations. Ultimately, this approach may offer a promising
control framework for HRI involving flexible objects.
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