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Abstract

As NeRF technology becomes more widely adopted, research has increas-
ingly focused on enhancing its performance. Despite its potential, NeRF
still faces several challenges, including long training times, high computa-
tional demands, and lower accuracy compared to other 3D reconstruction
methods such as photogrammetry. A critical step in NeRF generation
is camera pose estimation, which typically involves extracting features
such as object boundaries and corners from captured images. We found
that using an omnidirectional camera can reduce shooting time while
still enabling accurate NeRF generation, even when the camera lacks
a high-performance image sensor. In this study, we aimed to improve
the quality of camera pose estimation in order to enhance the accuracy
of NeRF generation by increasing the resolution of partitioned omni-
directional images and improving the definition of object boundaries.
Our experiments demonstrated that these improvements effectively re-
duced noise in the generated NeRFs and improved their overall accuracy.
Therefore, our findings suggest that even with consumer-grade devices,
such as general omnidirectional cameras, it is possible to generate a more
accurate NeRF space by incorporating the proposed processing.
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1. INTRODUCTION

In NeRF generation, the camera’s pose from multiple
viewpoints (i.e., its position and orientation) is estimated
first by performing feature matching across the input im-
ages. Based on the estimated poses and input images, an
MLP (Multi-Layer Perceptron) is used to learn the scene,
generating four-dimensional outputs such as density and
color, which represent the volumetric properties of the en-
vironment. The color values along a desired viewing di-
rection are computed by accumulating color and density
values, resulting in an image from that virtual viewpoint.
Thus, NeRF represents both the 3D geometry and the ap-
pearance of a scene from arbitrary viewpoints.
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In our study, input images are first processed to en-
hance object boundaries and increase overall resolution.
Camera poses are then estimated from the processed im-
ages, and a NeRF model is generated based on the obtained
parameters. The resulting model is used to reconstruct the
scene in 3D space. Further details are provided in the fol-
lowing chapter.

Photogrammetry, a traditional method for reconstruct-
ing 3D shapes from multiple images, has been studied
since the mid-19th century. More recently, Neural Radi-
ance Fields (NeRF) have gained significant attention as a
deep learning-based alternative. The primary differences
between NeRF and conventional photogrammetry lie in
generation time and the range of objects that can be accu-
rately represented. Photogrammetry often requires several
hours to capture and process a single scene [1]. In contrast,
NeRF leverages deep learning techniques and can recon-
struct scenes with shorter capture times. The required
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time can be reduced to just a few minutes, depending on
the complexity of the scene.

However, photogrammetry struggles with objects that
lack clear contours, such as reflective, refractive, or metal-
lic surfaces, due to difficulties in detecting and matching
features. In contrast, NeRF can learn how the appearance
of a scene changes depending on the viewing angle. As a
result, it is capable of reconstructing complex visual phe-
nomena, including reflections and transparent objects such
as glass, by modeling view-dependent effects.

NeRF has strong potential in mixed reality (MR) appli-
cations, and its use has expanded into everyday contexts.
Notable examples include McDonald’s commercials, artis-
tic works produced by modeling collectives, and various
entertainment applications. Furthermore, services such as
Luma AI have made NeRF generation more accessible to
general users. With the increasing availability of NeRF
tools, research is shifting toward improving usability and
performance [2]—[3]. Current challenges include long train-
ing times, high computational costs, and lower accuracy in
complex scenes compared to traditional photogrammetry.
In addition to efforts to improve the core NeRF model,
several studies have focused on enhancing the accuracy
of camera pose estimation, which is an essential step in
NeRF reconstruction. Other studies have explored com-
bining NeRF with complementary techniques [2][4].

The accuracy of NeRF generation is strongly influenced
by camera hardware. For example, using a DSLR with
a large sensor and a high-quality lens can better capture
high-frequency image components, resulting in more accu-
rate NeRF reconstructions. While high-end cameras are
suitable for research purposes, making NeRF more acces-
sible requires achieving similar levels of accuracy using
consumer-grade devices.

To address this issue, our study proposes improving
NeRF reconstruction using images captured by an omni-
directional camera, which has gained popularity in recent
years. Many smartphones are now equipped with cameras
capable of capturing omnidirectional images, making this
form of photography increasingly common. In the field of
NeRF research, several studies have investigated the in-
tegration of NeRF with omnidirectional imagery [5]. In
our approach, as shown in Fig.1, images are first captured
using an omnidirectional camera and then segmented into
multiple regions. Each region is processed to enhance both
resolution and the definition of object boundaries. These
enhanced images are used in the camera pose estimation
stage to improve the accuracy of estimated positions and
orientations. This leads to more accurate virtual viewpoint
synthesis and ultimately enhances the overall quality of the
NeRF.
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Figure 1: Processing flow of NeRF including proposed ap-
proach

2. Camera Pose Estimation and NeRF Space
Learning

NeRF generation requires input images along with the
external parameters of the camera, specifically its posi-
tion and orientation at the time the image was captured.
Estimating these parameters is known as camera pose es-
timation. Since this information is not usually recorded
in the image metadata or by the camera itself, it must
be estimated using other methods. Omne such method is
Visual Simultaneous Localization and Mapping (VSLAM)
[6], which estimates the camera’s pose while simultaneously
mapping the surrounding environment based on input im-
ages. By performing camera pose estimation, it becomes
possible to determine the viewpoint and position of the
camera during image or video capture. Camera pose esti-
mation is commonly performed using marker boards such
as those provided by ArUco. However, in this study, we
use a software-based approach for estimation.

2.1. Camera Pose Estimation

In this study, we use COLMAP [7], a widely adopted
tool in conventional NeRF pipelines, for camera pose es-
timation. COLMAP is an open-source Structure-from-
Motion (SfM) framework that estimates camera poses from
multiple images. Specifically, it employs a feature point
detection algorithm known as SIFT (Scale-Invariant Fea-
ture Transform) [8]. COLMAP first detects object fea-
tures such as edges and corners that are commonly ob-
served across images captured from different viewpoints.
It then estimates the camera poses by matching these fea-
tures within the overlapping regions of the images. Finally,
the NeRF scene is constructed using the estimated camera
poses along with the corresponding input images.

2.2. Learning Strategies for NeRF

The estimated camera pose information is utilized to
train the NeRF representation. In this study, we imple-
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Figure 2: Schematic diagram of NeRF model

ment our method using NVIDIA’s instant-ngp [9]. The
primary objective of NeRF is to train a Multi-Layer Per-
ceptron (MLP) [10], as illustrated in Fig.2. This MLP
takes as input a five-dimensional vector comprising the 3D
position coordinates (x,y,z) and the viewing direction (6, ¢)
and outputs the volume density (o) along with the object
material’s color and transparency in terms of RGB values.

However, instant-ngp, used in this study, applies Mul-
tiresolution Hash Encoding (MHE) to accelerate the train-
ing process and improve rendering quality [9]. MHE con-
verts low-frequency inputs such as 3D position vectors and
viewing directions into high-frequency signals such as RGB
values and density, which represent the color and trans-
parency of an object material. Although similar encod-
ing techniques have been used in previous studies, MHE
achieves faster performance because it is highly paralleliz-
able. In addition, its flexibility allows it to be applied to
other systems, including SLAM.

In the MHE process, the input is first mapped to in-
dices on a multi-resolution grid (Fig.3). Feature vectors are
then obtained by linearly interpolating from these indices.
These feature vectors are combined with other inputs, such
as the viewing direction, to form a final input vector. This
vector is then used to train a neural network (NN) that
represents the scene.
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Figure 3: (1) Hashing of voxel vertices (2) Look up (3)
Linear (4)Concentration (5)NN interpolation
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3. Shooting Environment and Processing to
Improve Resolution for NeRF

In this study, a frame is extracted from a video and
divided into four images, each covering a 90-degree field
of view. The original image size is 1920 x 1080 pixels.
These images are then downscaled to 50 percent of their
original size (960 x 540 pixels) using the Lanczos resam-
pling method, followed by the application of a sharpening
filter. After that, the processed images undergo a super-
resolution process using SwinlIR [11] to improve their res-
olution. To reduce processing time, a low-resolution filter
is applied once before the super-resolution step. SwinlR is
a super-resolution model based on the Swin Transformer
[12], a deep learning architecture capable of hierarchically
extracting image features. This model enables high-quality
denoising and upscaling while compensating for the loss of
high-frequency details caused by the initial segmentation
of the omnidirectional image. In this study, SwinIR is used
to enhance blurred edges and to improve the accuracy of
camera pose estimation.

3.1. Image capturing and segmentation

In this study, the RICOH THETA X omnidirectional
camera manufactured by RICOH, as shown in Fig.4, is
used as the imaging device. This camera captures 360-
degree omnidirectional images by combining two hemispher-
ical images taken with ultra-wide-angle fisheye lenses mounted
on the front and back of the camera. The images are then
corrected for distortion, as illustrated in Fig.5. While this
method offers the advantage of capturing images in all di-
rections, it also presents several challenges. One issue is
that the omnidirectional image contains a large amount of
visual information, which causes a significant loss in resolu-
tion when the distance between the camera and the object
increases. Additionally, due to the use of ultra-wide-angle
lenses, the captured image becomes increasingly distorted
toward the edges as the distance from the center grows [13].
To address these challenges, the distortion-corrected 360-
degree omnidirectional image is divided into four uniformly
segmented images, as shown in Fig.6. This step enables the
adaptation of the captured omnidirectional imagery to the
NeRF generation model, which is typically designed for
standard two-dimensional camera images. In this study,
a l-minute and 14-second video was recorded. From this
video, 78 frames were extracted and divided into four seg-
ments each, resulting in a total of 312 input images.

3.2. Image sharpening

In this study, a sharpening filter is applied to the input
images to improve the accuracy of camera pose estima-
tion using COLMAP. A sharpening filter enhances image
shading and emphasizes the edges of object boundaries by
increasing the rate of change in pixel values within the
image. Since COLMAP estimates camera poses based on
image features such as edges detected across multiple view-
points, applying a sharpening filter helps to improve the
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Figure 5: Example image frame from omnidirectional video

precision of feature matching and, consequently, the ac-
curacy of camera pose estimation. This enhancement is
expected to contribute to better performance in NeRF re-
construction. The sharpening filter [14] used is shown in
Fig.7. In this process, since color images are used, the
sharpening filter is applied separately to each of the RGB
channels. Since the application of this filter also enhances
noise components in the image, it is important to address
noise processing as well. In this study, after applying the
sharpening filter, the images are processed using a super-
resolution model, which is explained in the next section.
Figures 8 and 9 show the images before and after the sharp-
ening filter is applied, respectively. As shown in Fig.9, the
edges of objects in the image are more clearly emphasized
after processing.

Figure 6: Example of segmented image frame from omni-
directional camera
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Figure 7: Image smoothing filter used

Figure 8: Before applying the sharpening filter

Figure 9: After applying the sharpening filter

70



CNSER

Int. J. Computer Vision Signal Process.

Figure 10: An example before applying super-resolution
process

3.8. Object boundary enhancement

Super-resolution techniques can be broadly categorized

Figure 11: Cropped image part from Fig.10

into two types: multiple-image and single-image high-resolution

conversion. The model used in this study is a single-image
super-resolution model, which is trained using a large num-
ber of paired low- and high-quality images to learn how to
generate high-resolution outputs. This enables the con-
version of an input image into a higher-resolution version.
The development of super-resolution techniques using con-
volutional neural networks (CNNs) began with the intro-
duction of SRCNN [15], which utilizes a three-layer CNN.
More recently, Transformer-based models have emerged,
achieving higher accuracy; however, they generally require
longer processing times [9]. These models are widely used
in applications such as display monitors and image genera-
tion Al In this study, we apply super-resolution processing
using SwinIR [10] to images enhanced with sharpening fil-
ters. This technique improves image quality primarily by
increasing the pixel count in low-quality images. SwinlR
was chosen because it provides a more accurate represen-
tation of real-world scenes compared to GAN-based mod-
els like Real-ESRGAN [16]. Furthermore, since SwinlR is
Transformer-based, it demonstrates strong performance in
noise reduction, allowing it to suppress the noise that often
increases alongside high-frequency components. Figures 10
and 11 show an example image before applying the super-
resolution process and a cropped portion of the image from
Figure 10, respectively. Figures 12 and 13 present the cor-
responding results after applying the super-resolution pro-
cess. As seen in these figures, the resolution of the entire
image is enhanced, and the object boundaries, in particu-
lar, are more clearly emphasized.

4. Implementation Experiments

4.1. Dataset preparations

A RICOH THETA X was carried around the room at a
height of approximately 1 meter and used to capture video
footage for about 1 minute and 14 seconds, from which
78 frame images were extracted. A dataset of 312 images
was then created through segmentation, sharpening filter
processing, and super-resolution processing. Table 1 shows
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Figure 12: After applying super-resolution process to
image in Fig.10

Figure 13: Same cropped image area as Fig.11 after apply-
ing the super-resolution process.
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Table 1: Specifications of the PCs used

CPU Intel(R)Core(TM)i7-12700CPU
memory 80G
GPU NVIDIA GeForce RTX 3070

Table 2: Software used

oS Windows11
Python 3.11.5
OpenCV 4.8.1.78

the specifications of the PC used for this processing, and
Table 2 lists the software used.

4.2. Evaluation procedure

In this study, PSNR and SSIM are used as evaluation
metrics. PSNR (Peak Signal-to-Noise Ratio) measures the
ratio between the maximum possible signal power and the
power of noise, and it is commonly used to assess image
quality in the field of image processing. Generally, a higher
PSNR value indicates lower noise levels in the image, and
therefore, better image quality. However, since PSNR only
accounts for overall noise levels, it may not distinguish be-
tween cases where noise is uniformly distributed and cases
where significant noise is localized in a specific area. As
a result, an image with a relatively low PSNR value may
still appear to have high visual quality to the human eye.
Equation 1 shows the calculation of PSNR, where MAX
represents the maximum possible pixel value of the image,
and MSE denotes the mean squared error.

MAX?2 )

(1)

SSIM (Structural Similarity Index) [14] is a metric that
evaluates image quality based on comparisons of luminance,
contrast, and structural information. It was developed to
address the limitation of PSNR in capturing perceptual
differences, as images with similar PSNR values can still
appear visually different to the human eye. Like PSNR,
SSIM is widely used in the field of image processing. A
higher SSIM value indicates greater similarity in structural
aspects such as brightness and contrast, and therefore sug-
gests better image quality. SSIM is defined by Equation
2, where 1(x,y), c(x,y), s(x,y) are terms comparing lumi-
nance, contrast, and structure, respectively, and «, 8, v
are positive constants

SSIM(z,y) = [i(z, y)]* - ez, )" - [s(z,9)]"  (2)

4.3. Ezxperimental results

The NeRF space was trained for 35,000 iterations using
Instant-NGP, and its accuracy was evaluated using PSNR

Table 3: Accuracy of NeRF (result value after 5 times of
generation)

Without proposed | With proposed
processing processing
25.971 26.124
25.867 26.111
PSNR 25.950 26.108
25.971 26.082
25.901 26.092
0.88168 0.88285
0.88058 0.88337
SSIM 0.88076 0.88234
0.88193 0.88243
0.88073 0.88261

and SSIM, depending on whether the proposed image pro-
cessing was applied to the input images. Since NeRF re-
sults can vary between training runs, the average values
from five independently trained NeRF models were used
to improve the reliability of the evaluation.

(a) NeRF generation without applying the proposed pro-
cessing

(b) NeRF generation with applying the proposed process-
ing

Figure 14: An example of NeRF generation improvement

Table 3 presents the PSNR and SSIM values computed
for NeRF spaces generated with and without the proposed
image processing applied to the input images. As shown
in Table 3, both PSNR and SSIM values are higher when
the proposed image processing is applied. Furthermore,
Figs. 14 and 15 show examples of NeRF, generated us-
ing the images without and with the proposed processing
method, respectively. Specifically, the image regions inside
the red rectangles show noticeable differences. These re-
sults confirm that the accuracy of NeRF image generation
can be improved by incorporating the proposed processing
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(a) NeRF generation without applying the proposed pro-
cessing

(b) NeRF generation with applying the proposed process-
ing

Figure 15: An example of NeRF generation improvement

method.

5. CONCLUSIONS

In this study, we aimed to improve the accuracy of
NeRF by proposing the use of omnidirectional images and
an input image enhancement processing method. The pro-
posed processing enhances the input images by increas-
ing resolution and emphasizing object boundaries, which
in turn improves the accuracy of camera pose estimation
and subsequently the quality of the generated NeRF space.
This improvement is attributed to the enhanced visibility
of edges and corners in the processed images. Our find-
ings suggest that even with consumer-grade devices, such
as general omnidirectional cameras, it is possible to gen-
erate a more accurate NeRF space by incorporating the
proposed processing. We believe this approach can con-
tribute to the broader adoption and accessibility of NeRF
technology.
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