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Abstract

Monitoring hyperventilation (HV)-induced cerebral patterns offers a promis-
ing approach for early detection of mild cognitive impairment (MCI) and
Alzheimer’s disease (AD), which are associated with disrupted cerebral
blood flow, neuronal excitability, and brain connectivity. This study Levse
analyzed EEG signals collected under HV-induced physiological stress
using deep learning convolutional neural network (CNN)-based AT mod-
els to observe brain activity changes. Phase-amplitude coupling (PAC)
and spectral topographic mapping (STM) images were generated from
EEG and applied to two CNN architectures, MobileNetV2 and Xception. )
Functional connectivity was further examined using Pearson correlation ISSN: 2186-1390 (Online)
and Granger causality to identify neural alterations. Among these Al hitp://cennser.org/IJCVSP
models, Xception combined with PAC images achieved the highest clas-
sification accuracy of 98.95 %, outperforming MobileNetV2 (96.45 %) by
effectively capturing non-linear brain dynamics, impaired phase synchro-
nization, and disrupted neural communication in MCI and AD patients.
Gradient-weighted class activation mapping (Grad-CAM) was used to
rank EEG channels based on their importance, revealing that parietal
and occipital channels contributed most to model decisions. These re-
sults demonstrate that the proposed PAC-based Xception model pro-
vides a reliable method for identifying neurocognitive dysfunction and
neural desynchronization of MCI and AD patients with reduced delta-
alpha and theta-alpha couplings.
Contribution of the Paper: This study incorporates Granger
causality for analyzing HV-induced functional connectivity changes be-
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1. INTRODUCTION

Mild Cognitive Impairment (MCI) and Alzheimer’s Dis-
ease (AD) are neurocognitive disorders characterized by
progressive cognitive decline, affecting memory, and daily
functioning [1]. MCI is an intermediate stage between nor-
mal aging and dementia, where individuals experience no-
ticeable cognitive difficulties but can still perform daily ac-
tivities, whereas AD is the most common cause of demen-
tia, leading to severe memory loss and impaired cognitive
function. With an aging global population, concerns about
MCI and AD are rising, as these conditions significantly
impact healthcare systems and quality of life. According
to the World Health Organization (WHO), over 55 million
people worldwide suffer from dementia, with AD account-
ing for 60-70 % of cases, and nearly 15-20 % of people
aged 65 or older have MCI [2]. In hospitals, MCI and
AD are commonly diagnosed through neuropsychological
assessments, magnetic resonance imaging (MRI), positron
emission tomography (PET) scans, and cerebrospinal fluid
(CSF) analysis, which help to detect structural and func-
tional brain abnormalities. However, EEG is preferable
due to its non-invasive nature, and high sensitivity to func-
tional brain changes [3]. EEG can capture early neural
dysfunctions, including altered power spectral patterns and
disrupted functional connectivity, making it a valuable tool
for early-stage detection and Al-driven classification of neu-
rocognitive disorders.

Recent studies have explored neurocognitive disorder
detection using eyes-closed (EC), eyes-open (EQO), and hy-
perventilation (HV) induced EEG signals, particularly in
MCI and AD. Al-driven deep-learning models have gained
prominence for their ability to extract meaningful features
and classify cognitive impairments effectively. In 2024,
Seker employed an EEGNet-based CNN model, achiev-
ing 96.00 % accuracy in MCI vs. healthy controls (HC)
classification under eyes-closed conditions but lacked HV
analysis [4]. Similarly, Watanabe in 2024 applied a deep
CNN (MNet) for dementia classification, reaching 92.70 %
accuracy, yet struggled with interpreting neural activity
patterns [5]. Earlier studies by Miraglia in 2023 exam-
ined HV-induced EEG alterations using graph theory but
did not incorporate deep learning, while Coppola in 2010
analyzed visual-evoked potentials under HV in migraine
patients without applying AI models [6-7]. A research gap
exists in leveraging HV-induced EEG signals with deep-
learning models for enhanced neurocognitive disorder de-
tection. HV-induced cerebral pattern analysis is crucial
as HV alters cerebral blood flow, modulates neuronal ex-
citability, and affects brain connectivity, providing unique
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biomarkers for MCI and AD. This study addresses this gap
by integrating HV-induced EEG with AI models, particu-
larly phase-amplitude coupling (PAC) images in architec-
tures like Xception, to enhance interpretability, and early
detection of cognitive decline in MCI and AD patients.

In this study, CNN-based deep learning models with
MobileNetV2 and Xception architectures were employed
to classify MCI and AD using EEG signals. Spectral topo-
graphic mapping (STM) and PAC images, derived from
delta, theta, alpha, and beta bands, were used to cap-
ture spatial power distributions and cross-frequency inter-
actions between hemispheres. EEG data from Minkodo-
Minohara Hospital EEG Database (EEG-MHDB) were col-
lected into pre-HV (resting), during-HV, and post-HV (rest-
ing) conditions, enabling visualization of region-specific brain
dynamics across frontal, temporal, parietal, and occipi-
tal areas. While STM revealed distinct neural activity
patterns, PAC showed interaction between low-frequency
phase (delta, theta) and high-frequency amplitude (alpha,
beta) oscillations crucial for cognitive processes. PAC-
based Xception model captured disrupted phase synchro-
nization and non-linear neural connectivity patterns in MCI
and AD. Grad-CAM further enhanced model interpretabil-
ity by ranking EEG channels based on their contribution to
predictions, highlighting parietal and occipital channels as
most influential. An ablation study using these top-ranked
channels confirmed classification accuracy. This integrated
approach offers a reliable framework for early detection of
neurocognitive disorders

2. MATERIALS AND METHODS

The block diagram of Figure 1 outlines the neurocogni-
tive disorder detection process through HV-induced cere-
bral patterns in MCI and AD patients through a struc-
tured pipeline. The framework begins with selecting MCI
and AD subject groups, followed by EEG recording and
preprocessing to ensure signal quality. Connectivity be-
tween channels is assessed using Pearson correlation and
Granger causality to identify key EEG channels. Signals
are segmented into delta, theta, alpha, and beta bands,
then transformed into STM and PAC images to capture
power distribution and neural interactions. These images
are input into CNN models using MobileNetV2 and Xcep-
tion architectures for classification. Model performance
is evaluated using precision, recall, F-score, and accuracy,
ensuring reliable MCI and AD detection. Grad-CAM is
used to enhance interpretability of the selected model by
identifying the most influential channels, supporting both
accurate and explainable Al-driven diagnosis.

2.1. Subjects

This study analyzed EEG data from participants MCI
and AD from the Minkodo-Minohara Hospital EEG database
(EEG-MHDB) in Japan. A total of 34 subjects (22 AD, 12
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Figure 1: Neurocognitive disorder detection process through HV-
induced cerebral patterns in MCI and AD patients.

MCI), aged 60 to 90 years, with normal vision and hear-
ing, were included after providing written informed consent
[8]. All underwent neuropsychological assessments, includ-
ing the mini-mental state examination (MMSE) and clini-
cal dementia rating (CDR) scale, alongside EEG monitor-
ing. Clinical diagnosis by neurologists identified dementia
based on cognitive symptoms interfering with daily func-
tions, while MCI was determined using a cut-off score of
1.5 standard deviations below the age-adjusted norm in
the Wechsler memory scale (WMS) logical memory test.
Participants were classified based on MMSE scores, with
MCI (MMSE 24-27, N = 12) and AD (MMSE 0-23, N
= 22). Statistical analysis, including the Bonferroni cor-
rection test, revealed significant differences between the
groups, showing a notable effect of age (p < 0.001), where
MCIT patients were significantly younger than AD patients
(Bonferroni-corrected p < 0.001) [9]. Additionally, MMSE
scores showed a significant decline from MCI to AD (p
< 0.001), confirming a progressive cognitive deterioration
trend (MCI > AD). These results emphasize the role of age
and MMSE scores in distinguishing cognitive dysfunction

o1

and HV-induced response analysis (AD > MCI).

2.2. EEG recording and data preprocessing

All subjects underwent routine clinical EEG recording
at Minkodo-Minohara Hospital, Japan, following standard
scalp preparation with gel and cotton tips [8]. EEG sig-
nals were recorded using 21 electrodes placed according to
the international 10-20 system, covering frontal (Fpl, Fp2,
F3, F4, F7, F8, Fz), temporal (T3, T4, T5, T6), central
(C3, C4, Cz), parietal (P3, P4, Pz), occipital (01, O2),
and ipsilateral earlobes reference (A1, A2) regions, with a
sampling rate of 500 Hz. Participants sat with eyes closed
in a dimly lit room while EEG data were recorded un-
der three conditions: resting-state (pre-HV), hyperventila-
tion (during-HV), and resting-state (post-HV). The study
focused on HV-induced cerebral activity, where subjects
performed overbreathing for 2s, followed by a 2s rest be-
fore and after overbreathing, with each phase repeated in
2s intervals, separated by a 2s break, as depicted in Figure
2. For each participant, EEG signals were recorded over 30
trials, with each trial lasting 2s, allowing for a comprehen-
sive analysis of HV-induced cerebral patterns in MCI and
AD. Data preprocessing involved re-referencing all chan-
nels using reference ear electrodes (Al, A2) and filtering
the signals to 0.5-35 Hz to remove noise and enhance signal
clarity. This study analyzed HV-induced cerebral activity
by selecting the most relevant channels from frontal, tem-
poral, central, parietal, and occipital regions using Pear-
son correlation and Granger causality tests to uncover HV-
related neural alterations that differentiate MCI and AD
groups.

Break: 10s

Hyperventilation (during HV) |
|
Pre-HV L - . - . - Post-HV
msnug)] HV1 ]T[ HV2 ].[ HV3 ].l HV4 }Q{ HV30 ].[(rcsliug)
2s 2s 2s 2s

10s 2s 10s

Break: 2s

EEG recording

Figure 2: HV performed during clinical EEG examination. HV in-
volved overbreathing for 2s with 2s breaks between HVs. Subjects
kept their eyes closed throughout EEG recording for consistent neu-
ral response measurement.

2.8. Connectivity between channels

Pearson correlation and Granger causality tests were
applied to 19 EEG channels across frontal (Fpl-Al, Fp2-
A2 F3-Al, F4-A2, F7-Al, F8-A2, Fz-Al), temporal (T3-
Al, T4-A2, T5-A1, T6-A2), central (C3-Al, C4-A2, Cz-
A1), parietal (P3-Al, P4-A2, Pz-Al), and occipital (O1-
A1, 02-A2) regions to analyze HV-induced functional con-
nectivity and neural communication impairments in MCI
and AD patients. These techniques offer complementary
perspectives on brain interactions, effectively identifying
neural patterns while minimizing redundancy. Each re-
gion plays a crucial role: parietal channels (P3-Al, P4-
A2) facilitate sensory integration and cognitive processing,
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temporal channels (T3-A1, T4-A2, T5-A1, T6-A2) are es-
sential for memory encoding and auditory processing, and
occipital channels (O1-A1, O2-A2) support visual process-
ing and stimulus-driven responses. Analyzing connectivity
changes across these regions provides critical insights into
neural dysfunction, enhancing the detection of MCI and
AD-related neurocognitive impairments.

2.8.1. Pearson correlation test
Pearson correlation test captures linear connectivity

and synchrony across brain regions, including frontal-central,
frontal-parietal, frontal-temporal, occipital-frontal, occipital-

parietal, occipital-temporal, temporal-parietal, and intra-
regional correlations [10]. It measures the strength of as-
sociation between EEG channel pairs by analyzing signal
similarity, providing valuable insights into functional con-
nectivity and neural interactions across different brain re-
gions. Pearson correlation coefficient, (|r|) is calculated
and shown in Eq. (1):

S (X - XY - Y)
VEN (X - X2 YN (v - Ty

where X; and Y; are individual sample points, X and
Y are the means of the datasets X and Y. The pairs of
channels are considered highly correlated if the correlation
coefficient, |r| is close to 1 and uncorrelated if the correla-
tion coefficient, |r| is 0 or below 0.3. Pearson correlation
coefficients (|r|) identify highly correlated EEG channels
that exhibit consistent connectivity changes in MCI and
AD groups, while eliminating weakly correlated or redun-
dant channels. By analyzing variations in |r|, this approach
highlights relevant neural connections between EEG chan-
nels, enhancing the detection of HV-induced cerebral pat-
terns for MCI and AD classification.

(1)

| =

2.8.2. Granger causality test

Granger Causality test reveals directional connectivity
by assessing how one channel in brain region connects an-
other channel, such as occipital influencing parietal regions
[11]. This helps analyze neural communication dynamics,
offering insights into information flow impairments in MCI
and AD. If X; and Y; are two channels, to check if X;
Granger-causes Yz, compute Granger causality F-statistic
as shown in Eq. (2):

(0 —03)/p
o3/(N - 2p)

Where, 02 and o3 are variance of residuals from univari-
ate autoregressive model without causal influence and bi-
variate autoregressive model with causal influence respec-
tively, p is number of lagged observations, N is number of
observations. The univariate autoregressive model without
causal influence is represented in Eq. (3):

F — statistic =

(2)

p
Y, = Z oY i+ & (3)
i=1

Where, Y; is a channel, «; are the autoregressive coef-
ficients, €; is the error term. The bivariate autoregressive
model with causal influence is depicted in Eq. (4):

P P
Y= aiYii+) biXej+e (4)
i=1 j=1

Where, X; is another channel, b; are the autoregres-
sive coefficients for X;, €}, is the new error term. If the
F-statistic is significant, X; Granger-causes Y%, indicating
directional connectivity between EEG channels; otherwise,
no causal influence exists. In channel connectivity anal-
ysis, an F-statistic < 0.10 indicates weak or no causal-
ity, 0.10-0.20 suggests significant functional connectivity,
and > 0.20 implies strong Granger causality, meaning one
channel strongly connects another. Higher values reflect
neural interactions in cognition or disruptions in MCI and
AD, while lower values indicate weak relationships between
channels.

2.4. EEG signals segmentation

EEG signals were recorded across three conditions such
as pre-HV (resting), during-HV, and post-HV (resting)
from 19 channels of every patient to analyze HV-induced
cerebral patterns in MCI and AD patients. For each par-
ticipant, HV trials consisted of 30 trials (2s each), while
pre-HV and post-HV trials lasted 10s each. To enhance
analysis resolution, each HV trial was divided into two 1s
segments, resulting in 60 segments per subject of 19 chan-
nels (during-HV: 30 trials x 2 segments x 19 channels).
Similarly, pre-HV and post-HV trials were each divided
into ten 1s segments, yielding 10 segments per subject per
condition (pre-HV: 10 segments x 19 channels, post-HV:
10 segments x 19 channels). Each segment was divided
into four frequency bands (delta: 0.5-4 Hz, theta: 4-8 Hz,
alpha: 8-12 Hz, beta: 12-35 Hz) for further analysis. STM
and PAC images were generated using a 1s time window
from the selected EEG channels. Considering all 34 sub-
jects and 19 EEG channels, a total of 51680 segments were
obtained for MCI and AD groups. Each test set for MCI
and AD groups contained 10336 segments. Then images
were generated to ensure reliable CNN model performance
in detecting neurocognitive disorders.

2.5. Generation of images

STM and PAC images were used to represent power
distribution across selected brain regions during pre-HV,
during-HV, and post-HV conditions. These images pro-
vide reliable measures of neural oscillatory responses, of-
fering valuable insights into HV-induced brain dynamics
and neurocognitive alterations.
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2.5.1. STM

STM provides a visual representation of power distri-
bution across four frequency bands over the scalp, high-
lighting spatial variations in brain activity during pre-HV,
during-HV, and post-HV conditions [12]. Generated from
segmented EEG data, STMs are derived by computing
power spectral density (PSD) using the Welch method for
each 1ls segment, as formulated in Eq. (5).

()

where P(f) is the power at frequency f, and X;(f) is
the Fourier transform of the signal at channel, i. These
mappings capture asymmetrical power distributions be-
tween the left and right hemispheres across different fre-
quency bands, offering insights into cognitive decline. They
facilitate the characterization of brain oscillatory responses,
providing a deeper understanding of neural dynamics and
stimulus-driven cortical activity, ultimately aiding in the
differentiation of neurocognitive disorders.

2.5.2. PAC

PAC quantifies the interaction between low-frequency
phase (e.g., delta, theta) and high-frequency amplitude
(e.g., alpha, beta) oscillations in the brain [13]. This cou-
pling evaluates how low-frequency oscillations (delta and
theta) influence high-frequency oscillations (alpha and beta),
which are critical for assessing cognitive decline. The math-
ematical representation of PAC is given in Eq. (6):

N
Clpsfa) = 5 3 AlLas ) ()
n=1
Where C(fp, fa) represents the coupling strength be-
tween phase frequency f,(delta,theta) and amplitude fre-
quency fq(alpha,beta), A(fq,ty,) is the amplitude envelope
of the high-frequency signal, ¢(fp,t,) is the instantaneous
phase of the low-frequency signal at time ¢,,. The signifi-
cance of PAC strength lies in its ability to detect disrupted
neural communication across brain regions in MCI and AD.
Strong PAC strength in the frontal and parietal regions
supports executive functions and working memory, while
PAC strength in the occipital region plays a crucial role in
visual processing. A reduction in PAC strength, particu-
larly in delta-alpha and theta-alpha interactions, leads to
impaired phase synchronization, weakening interregional
communication and neural coordination, which are essen-
tial for cognitive function.

2.6. Neurocognitive disorders classification using AI mod-
els

The classification of neurocognitive disorders was per-

formed using CNN deep-learning models, specifically Mo-

bileNetV2 and Xception architectures, to analyze HV-induced

cerebral patterns of MCI and AD patients utilizing EEG-
based STM and PAC images [10, 14]. According to Table
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1, MobileNetV2 consists of 53 total layers, while Xception
has 71 layers, both using a batch size of 64 and the Adam
optimizer with a learning rate of 0.0001. MobileNetV2 was
trained for 90 epochs, whereas Xception was trained for 80
epochs. As shown in Figure 3(a), MobileNetV2 initially
processes 224 x224 input images, reducing them to 7 x7
feature maps through a series of convolutional and pooling
layers, culminating in 1280 neurons in the Fully Connected
(FC) layer before classification into two groups (MCI and
AD). In contrast, Xception depicted in Figure 3 (b) follows
a deeper structure, refining 224 x224 inputs into 7 x7 fea-
ture maps, but with a higher depth and 2048 neurons in the
FC layer before classification. These deep learning archi-
tectures provide classification for neurocognitive disorder
detection.

Table 1: Hyperparameters for different architectures.

Hyperparameters Deep-learning architectures
MobileNetV2 Xception
Total layers 53 71
Batch size 64 64
Epochs 90 80
Learning rate 0.0001 0.0001
Optimizer Adam Adam

A total of 51680 segments (MCI: 18240 segments, AD:
33440 segments) from 34 subjects were used, with each
subject contributing 1520 spectral topographic mapping
images and 1520 phase-amplitude coupling images. The
dataset was divided into 70 % for training (36176 spec-
tral topographic mapping images, 36176 phase-amplitude
coupling images), 10 % for validation (5168 spectral topo-
graphic mapping images, 5168 phase-amplitude coupling
images), and 20 % for testing (10336 spectral topographic
mapping images, 10336 phase-amplitude coupling images),
ensuring reliable model evaluation. The CNN models pro-
cessed 224 x224 x3 images using this dataset split. CNN
model’s performance was assessed using precision, recall,
F-score, and accuracy, as defined in Eq. (7) to Eq. (10):
precision measured positive prediction accuracy, recall (sen-
sitivity) evaluated true positive detection, F-score balanced
precision and recall, and accuracy reflected overall predic-
tion correctness [10].

These measures confirmed the effectiveness and reliabil-
ity of MobileNetV2 and Xception deep learning architec-
tures in classifying neurocognitive disorders such as MCI
and AD.

. TP
Precision = TP FP x 100% (7)
TP
Recall = m X 100% (8)
Precisi
F - score — recision X Recall < 100% (9)

Precision + Recall
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Figure 3: Deep learning architectures of CNN models; (a) MobileNetV2, (b) Xception.
Accuracy TP+TN x 100% (10) Where N is the number of elements in feature map and
TP+TN+FP+FN

Where, TP = True Positive, TN = True Negative, FP
= False Positive, and FN = False Negative.

2.7. Channels ranking to enhance model interpretability

Grad-CAM is a neural network interpretability tech-
nique that identifies the most influential input regions con-
tributing to a model’s prediction by utilizing the gradi-
ents of target outputs with respect to convolutional feature
maps [15]. In the context of EEG-based neurocognitive dis-
order detection, PAC images are generated for each EEG
channel and passed through Xception based CNN model.
For each EEG channel j, Grad-CAM computes feature at-
tributions ; by a weighted sum of feature maps from the
last convolutional layer in Eq. (11) [15]:

K
Q; =ReLU(D _ wrA¥)
k=1

(11)

Here, A? represents the k-th feature map for the j-th
EEG channel and wf is the weight capturing the impor-
tance of feature map A%, calculated as Eq. (12) [15]:

1 & dy
k _
wj = IZZI max(0, 87%) (12)

dy/ 5’Aé€i,j is the gradient of the output with respect to each
activation. This formulation ensures that only positively
contributing features are considered, enhancing focus on
discriminative patterns. By averaging the resulting €;
scores across samples, EEG channels are ranked based on
their relative contribution to the final classification, allow-
ing for explainable and data-driven selection of the most
relevant channels for detecting neurocognitive disorders.

2.8. Performance evaluation of selected model

To evaluate the classification performance of the se-
lected deep learning model (Xception) using PAC images
derived from EEG channels, mean absolute percentage er-
ror (MAPE) is employed to assess how accurately the model
predicts neurocognitive disorder outcomes relative to the
true values [15]. It is calculated as Eq. (13):

T ~
1 2 : Yr — Yr

r=1
where T is the total number of predictions, y, is the
actual value for the r-th instance, and ¥, is the predicted
output from the model. In this study, feature attribu-
tions for each EEG channel are obtained using the Grad-
CAM technique, which highlights spatial-frequency regions
that contribute most to the classification. Based on these
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scores, channels are ranked, and a sequential feature abla-
tion study is conducted. The model is retrained with pro-
gressively reduced EEG channels, starting from all chan-
nels and gradually removing those with the lowest Grad-
CAM attribution. The resulting MAPE values from each
retraining phase are compared to quantify the significance
of each channel. A lower MAPE when using top-ranked
channels confirms their relevance in capturing discrimina-
tive neural patterns for accurate detection of neurocogni-
tive disorders.

3. RESULTS AND ANALYSIS

3.1. Analysis of channels connectivity

Figure 4 illustrates connectivity between EEG chan-
nels using Pearson correlation and Granger causality tests.
In the Pearson correlation test of Figure 4(a), channels
with significant correlation (0.30-1.00) are represented in
green, yellow, and red, indicating moderate to strong con-
nectivity. Notably, occipital-parietal correlations (O1-Al
to P3-Al, 02-A2 to P4-A2), seen in yellow to red re-
gions, reflect sensory-visual integration and HV-induced
excitability, crucial for classifying MCI and AD. Similarly,
occipital-frontal (O1-A1 to Fpl-A1l, 02-A2 to Fp2-A2, O1-
Al to F3-A1, O2-A2 to F4-A2, O1-A1 to F7-A1, 02-A2
to F8-A2) connections, marked in green to blue, highlight
top-down modulation of visual attention, while occipital-
temporal (O1-A1 to T3-Al, 02-A2 to T4-A2, O1-Al to
T5-A1, 02-A2 to T6-A2) interactions, appearing in yellow
to red, play a role in visual memory. The Granger causal-
ity test shown in Figure 4(b) indicates significant direc-
tional influence (0.20-0.50), with green, yellow, and red re-
gions representing stronger causality. Enhanced occipital-
parietal and occipital-frontal causality, particularly in yel-
low to red, suggests functional integration, while weaker
intra-regional causality in occipital lobe (blue regions) indi-
cates neurodegeneration, reinforcing occipital connectivity
for MCI and AD classification.

3.2. Analysis of generated images

Figure 5 presents STM images of MCI and AD groups
in the alpha (8-12 Hz) frequency band across pre-HV,
during-HV, and post-HV conditions. The color distribu-
tion indicates power intensity, with blue (low power, 0-50
uV?/Hz), green-yellow (moderate power, 50-150 yV?2/Hz),
and red (high power, 150-200 V?/Hz). In pre-HV (Fig-
ure 5 (a), Figure 5 (d)), both groups exhibit higher oc-
cipital and parietal alpha power, particularly in the MCI
group, where posterior activity remains more symmetrical.
In contrast, AD patients show greater occipital-temporal
asymmetry, with lower power in hemisphere. In during-
HV (Figure 5 (b), Figure 5 (e)), a power reduction is ob-
served across both groups, but AD patients experience a
more pronounced drop and slow wave activity, particularly
in occipital and parietal regions, indicating weaker corti-
cal responsiveness. In the post-HV condition (Figure 5
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(c), Figure 5 (f)), MCI patients show partial alpha recov-
ery, particularly in the parietal-occipital regions, while AD
patients exhibit persistent alpha suppression, reflecting re-
duced neural resilience. The asymmetry between hemi-
spheres in AD patients remains evident across all condi-
tions, whereas MCI individuals display a more balanced
recovery, supporting the hypothesis of greater neurodegen-
erative impact in AD.

PAC images for MCI and AD groups in occipital regions
across pre-HV, during-HV, and post-HV conditions, show-
ing delta-alpha, theta-alpha, delta-beta, and theta-beta
couplings are illustrated in Figure 6. The color scale rep-
resents PAC strength, with blue (low coupling, 0.00-0.05),
yellow (moderate coupling, 0.05-0.12), and red (high cou-
pling, 0.12-0.20). In pre-HV (Figure 6(a), Figure 6(d)),
MCI patients show stronger delta-alpha and theta-alpha
coupling (yellow-red regions) in the low-frequency range
(0.5-4 Hz phase, 8-12 Hz amplitude), while AD patients
exhibit weaker PAC strength, particularly in delta-beta
and theta-beta couplings, suggesting reduced neural co-
ordination. In during-HV (Figure 6(b), Figure 6(e)), MCI
PAC strength increases, particularly in theta-alpha and
delta-beta couplings (red regions), indicating adaptive neu-
ral responses, whereas AD patients show further PAC re-
duction, especially in higher frequencies (theta-beta cou-
pling remains weak in blue regions), suggesting impaired
cortical adaptability. In post-HV (Figure 6(c), Figure 6(f)),
MCI patients retain moderate PAC recovery (yellow re-
gions in theta-alpha and delta-beta coupling), while AD
patients show persistently reduced PAC strength, particu-
larly in delta-alpha and theta-alpha couplings, highlighting
cognitive dysfunction and neural desynchronization. The
distinct PAC variations indicate weaker neural connectiv-
ity in AD, reinforcing PAC as a biomarker for distinguish-
ing MCI from AD.

8.8. Classification results

Table 2 presents performance measures such as preci-
sion, recall, F-score, and overall accuracy for classifying
neurocognitive disorders (MCI vs AD) using CNN deep
learning models, specifically MobileNetV2 and Xception
architectures, applied to STM and PAC images.

Table 2: Performance measures to classify NCDs (MCI vs. AD).

D. L. Input | Grps. | Prc. Rec. | F-sc. | Acc.
arch. imgs. (%) (%) (%) (%)
o | 5T Lm0
N | e DO Do
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Figure 4: Connectivity between EEG channels; (a) Pearson correlation test, (b) Granger causality test.
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Figure 5: Spectral topograpic mapping images for MCI and AD groups in alpha (8-12 Hz) frequency bands; (a) pre-HV, (b) during-HV, (c)

post-HV.

For MobileNetV2, using STM, the model achieved pre-
cision of 89.39 % (MCI) and 95.67 % (AD), with recall
values of 92.19 % (MCI) and 94.03 % (AD), resulting in F-
scores of 90.77 % (MCI) and 94.84 % (AD) and an overall
accuracy of 92.26 %. When using PAC images, precision
improved to 93.97 % (MCI) and 97.26 % (AD), with recall
of 94.87 % (MCI) and 97.19 % (AD), leading to F-scores
of 94.41 % (MCI) and 97.22 % (AD), and a higher accu-
racy of 96.45 %. The Xception model outperformed Mo-
bileNetV2, achieving precision of 91.25 % (MCI) and 95.79
% (AD) with recall values of 92.53 % (MCI) and 94.77 %
(AD) when using STM, resulting in F-scores of 91.39 %
(MCI) and 95.28 % (AD) and an overall accuracy of 94.53
%. The highest performance was observed using Xception
with PAC, where precision reached 97.51 % (MCI) and
99.19 % (AD), recall values were 98.65 % (MCI) and 98.97

% (AD), F-scores were 98.08 % (MCI) and 99.07 % (AD),
with a peak accuracy of 98.95 %. These results indicate
that Xception with PAC images provides the most reliable
classification of MCI and AD, highlighting its effectiveness
in distinguishing neurocognitive disorders.

To address real-time and clinical deployment feasibil-
ity for neurocognitive disorder detection, this study evalu-
ated MobileNetV2 and Xception models based on inference
time, model size, and suitability for edge devices. Mo-
bileNetV2, with a model size of ~ 20 MB and an inference
time of ~ 25 ms per image on a standard CPU, achieved
96.45 % accuracy using PAC images, making it well-suited
for low-resource, real-time applications such as wearable
EEG headsets. Xception, though more computationally
intensive with a model size of ~ 35 MB and ~ 30 ms in-
ference time, delivered a higher accuracy of 98.95 %, ef-
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Figure 6: Phase-amplitude coupling images for MCI and AD groups in occipital regions; (a) pre-HV, (b) during-HV, (c) post-HV

fectively capturing complex PAC features crucial for early
MCI and AD detection. While MobileNetV2 is ideal for
edge deployment, Xception is preferred for hospital-based
systems where diagnostic precision is paramount.

3.4. Analysis of performance evaluation of selected model

Figure 7 illustrates the ranking of EEG channels based
on their attribution scores derived from the Grad-CAM
technique, highlighting their relative importance in detect-
ing neurocognitive disorders. The occipital channels (O1-
A1, 02-A2) and parietal channels (Pz-Al, P3-A1, P4-A2)
show the highest attribution scores, indicating their domi-

nant influence in the model’s decision-making process. These

regions reflect early cognitive impairment and disrupted
brain oscillations, supporting their clinical relevance. In
contrast, frontal and temporal channels such as F8A2 and
T4-A2 contribute less to classification. This ranking en-
ables selection of the most informative EEG channels, im-
proving interpretability and guiding efficient model design.

Figure 8 presents Grad-CAM overlay results that vi-
sualize the specific spatial-frequency regions within PAC
images that the Xception model emphasized while classify-
ing neurocognitive disorders. The input PAC images (top
row) represent the phase—amplitude coupling patterns for
MCI and AD, while the bottom row highlights the cor-
responding Grad-CAM activations. The model’s attention
in MCI cases is centered around moderate delta—alpha and
theta—beta couplings, reflecting adaptive changes, whereas
in AD, the focus shifts toward impaired delta—alpha and
theta—gamma regions, especially under stress conditions
like hyperventilation. These overlays confirm that Xcep-
tion effectively captures clinically relevant PAC features,
demonstrating its strong interpretability and diagnostic
utility in distinguishing between MCI and AD.
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Figure 7: EEG channel attribution scores for Disorder Detection that
rank channels in descending order of importance using Grad-CAM.

Figure 9 presents the results of an ablation study eval-
uating the Xception model’s performance when retrained
with a progressively increasing number of EEG channels
ranked by Grad-CAM. In Figure 9 (a), the MAPE de-
creases significantly as the top-ranked channels are added,
reaching its lowest around the 5 channels including oc-
cipital and parietal regions, which highlights their strong
contribution to accurate neurocognitive disorder detection.
Figure 9 (b) shows a gradual, near-exponential increase in
training time as more channels are included, indicating a
trade-off between accuracy and computational cost. These
findings support the efficient selection of key EEG chan-
nels to optimize both model performance and training ef-
ficiency.
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Figure 8: Grad-CAM overlays on PAC images showing the spatial-
frequency regions the Xception model focused on for classifying MCI
and AD, highlighting key discriminative patterns in each case.

4. DISCUSSION

4.1. Accuracy of detection

The Xception architecture-based CNN model with phase-
amplitude coupling images achieved 98.95 % accuracy, out-
performing MobileNetV2 by 2.50 % accuracy, as shown in
Table 2. Xception’s superior feature extraction, deeper
spatial analysis, and efficient depthwise separable convolu-
tions capture better EEG-based cerebral patterns recogni-
tion, enabling higher accuracy in detecting MCI and AD-
related neural dysfunction as represented in Figure 3.

PAC images outperform STM images in neurocognitive
disorder detection by capturing non-linear interactions be-
tween low-frequency phase (delta, theta) and high-frequency
amplitude (alpha, beta) oscillations, revealing functional
connectivity disruptions as illustrated in Figure 5 and Fig-
ure 6. During HV, cerebral vasoconstriction reduces oxy-
gen delivery, disrupting neural activity in MCI and AD
patients, leading to reduced alpha power and increased
slow-wave activity. Unlike STM, which maps power dis-
tribution in different regions of the brain, PAC highlights
phase synchronization deficits, making it a more reliable
tool for early detection of cognitive decline.

Pearson correlation and Granger causality tests were
applied to select EEG channels for MCI and AD detec-
tion by analyzing linear and directional connectivity as
depicted in Figure 4. Pearson correlation identified re-
duced occipital-parietal and temporal connectivity, indi-
cating neural dysfunction, memory decline, and inter- hemi-
spheric asymmetry. Granger causality revealed weakened
frontal-to-occipital and occipital-to-parietal causal flow, re-
flecting predictive connectivity loss and cognitive deficits.
These tests highlighted memory disruptions, aiding in EEG-
based early neurocognitive disorder detection.
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Figure 9: Ablation study — evaluation of Xception model to retrain-
ing with the variation of channels; (a) MAPE, (b) training time.

The performance evaluation of the Xception model us-
ing Grad-CAM reveals strong interpretability for detecting
MCI and AD, as shown in Figure 7, Figure 8, and Figure 9.
EEG channel attribution highlights occipital and parietal
regions as critical, indicating disrupted posterior-anterior
brain connectivity and altered neuronal excitability. Grad-
CAM overlays on PAC images show the model focuses on
low-to-mid frequency patterns for MCI and broader regions
for AD, reflecting distinct coupling abnormalities. Abla-
tion analysis confirms that using top-ranked channels sig-
nificantly reduces MAPE and training time, demonstrating
the model’s efficiency and ability to detect disease-specific
neurophysiological markers with fewer inputs.

4.2. Comparison of the proposed model with previous stud-
ies

The proposed Xception-based AI model with phase-
amplitude coupling images achieves 98.95 % accuracy in
MCI vs. AD classification, outperforming previous studies
as shown in Table 3. Prior models, including EEGNet-
based CNN (96.00 % accuracy, HC vs. MCI) and MNet-
based Deep CNN (92.70 % accuracy, HC vs. AD), primar-
ily utilized raw EEG with eyes-closed states. Unlike these
approaches, the proposed model leverages HV-induced EEG
changes, effectively capturing non-linear brain dynamics,
enhancing neurocognitive disorders detection and its prac-
tical applicability.
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Table 3: Comparison with previous studies to classify NCDs.

Study Model Input | State Results
HC vs. MCI
] CNN Raw EC (2 classes)
(EEGNet) | EEG Fl-sc.: 96.00 %
Ace.: 96.00 %
CNN Raw MCI vs. AD
[5] (MNet) EEG EC (2 classes)
Acc.: 92.70 %
CNN PAC MCI vs. AD
Prop. (Xception) | image HV (2 classes)
p & Acc.: 98.95 %

4.8. Further development

The Al model with Xception deep-learning architecture
by utilizing phase-amplitude coupling images demonstrates
reliable performance in classifying MCI and AD patients’
cerebral patterns during hyperventilation. To enhance gen-
eralizability and clinical applicability, future research will
focus on validating the Xception-based AI model using
larger, more diverse cohorts through multi-hospital collab-
orations. Although current dataset expansion is limited
by hospital access, subject-level diversity remains a pri-
ority. Future work will also include HC data to better
distinguish normal brain function from pathological brain
activity and improve triage capability. Addressing sample
imbalance and incorporating variability in age, sex, and
comorbidities will further refine model performance. Ad-
ditionally, integrating complementary stress-inducing tasks
such as EO/EC states and photic stimulation, along with
combining CNNs with other deep learning models and ap-
plying repeated-measure protocols, will help reduce vari-
ability and strengthen its practical application for early
neurocognitive disorder detection. Future efforts will focus
on optimizing Xception through compression and quanti-
zation to support real-time, point-of-care clinical screening.

5. CONCLUSION

This study proposed a phase-amplitude coupling image-
based deep learning AI model with Xception architecture
to detect impaired phase synchronization and disrupted
neural communication across brain regions before, during,
and after HV in MCI and AD patients. By comparing
MobileNetV2 and Xception architectures with spectral to-
pographic mapping and phase-amplitude coupling images,
the Xception architecture-based AI model effectively cap-
tures HV-induced neural disruptions and inter-hemispheric
asymmetry for MCI and AD classification. The findings
highlight phase-amplitude coupling images as key biomark-
ers for detecting cognitive dysfunction, offering a simple
and accurate approach for HV-induced neurocognitive dis-
order detection.
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