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Abstract
Millions of people worldwide suffer from mental health conditions like
anxiety, stress, and depression, but early and precise detection is still dif-
ficult. This study introduces MNMD (Multimodal Non-Invasive Mental
Disorder Detection), a system that uses an effective late fusion technique
to combine results from the DASS-21 questionnaire with facial expres-
sions in a unique way. In contrast to earlier methods, MNMD focuses on
a low-complexity, non-invasive design that combines projected outputs
using a ”common-string” technique, lowering computational overhead
while improving data resilience and variation. The system uses a vari-
ety of machine learning models and deep learning frameworks in addi-
tion to extensive image feature extraction using Gabor filters and facial
landmark detection. With an impressive 98.43% accuracy rate, MNMD
offers a quicker, privacy-preserving method of early mental health di-
agnosis while also demonstrating enhanced prediction performance and
practicality for real-world implementation.
Contribution of the Paper: The primary contribution is the develop-
ment of a novel, non-invasive multimodal fusion method called MNMD,
which combines textual and visual data using a low-complexity late fu-
sion technique and achieves higher accuracy (98.43%) in the detection
of stress, anxiety, and depression.
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1. INTRODUCTION

Mental health disorders like anxiety, depression, and
stress impact millions globally, affecting both emotional
and physical well-being. Influenced by genetic, environ-
mental, and psychological factors, these conditions cause
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symptoms such as persistent worry, sleep disturbances, and
irritability. Early and accurate diagnosis is crucial for ef-
fective treatment, and machine learning offers a promis-
ing solution by integrating facial expressions and textual
responses for more reliable detection. However, invasive
algorithms raise privacy concerns, demand high computa-
tional resources, and may produce unreliable diagnoses. A
simpler, more efficient approach is needed to enhance ac-
curacy, user experience, and scalability in mental health
care.

The main goal of this study is to provide a reliable,
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multimodal late fusion method that uses a non-invasive
procedure to precisely identify mental health issues like
stress, anxiety, and depression. The goal is to improve this
strategy, making it more efficient, successful, and suited to
the complications of mental health condition recognition,
by expanding on the work of [1]. The key objectives are as
follows:

1. Patient Comfort: Ensures a seamless, non-invasive
process for accessible and user-friendly mental health
detection.

2. Facial Landmark Features: Enhances emotion detec-
tion by integrating landmark and Gabor features, im-
proving accuracy under various conditions.

3. Efficient Data Fusion: Combines DASS-21 (Depres-
sion, Anxiety and Stress Scale-21) responses and fa-
cial features with minimal complexity while main-
taining high accuracy.

4. Practical Validation: Undergoes extensive real-world
testing to ensure reliability and accuracy in diverse
scenarios.

2. RELATED WORKS

The application of machine learning in mental health
detection has gained traction, particularly in leveraging
unimodal methods such as textual data, EEG signals, or fa-
cial expressions. Priya et al. (2020) [2] utilized the DASS-
21 survey to evaluate the severity of stress, depression, and
anxiety, achieving an average accuracy of nearly 80% across
classifiers like Decision Tree, SVM, Naive Bayes, KNN, and
Random Forest. However, there are no mentions of hyper-
parameters that increases detection capacity of the mod-
els. Alshorman et al. (2022) [3] employed EEG spectrum
analysis of the frontal lobes using Fast Fourier Transform
(FFT) for feature extraction, coupled with SVM and Naive
Bayes classifiers, reaching 98.21% accuracy in subject-wise
classification. Although the FFT-based approach shows
promise, it remains limited to stress detection through an
invasive process. Jawad et al. (2023) [4] introduced the
PS-CS optimization algorithm, a combination of particle
swarm optimization and cuckoo search, to train CNNs for
depression detection, achieving a remarkable 99.5% accu-
racy, outperforming traditional models like KNN and De-
cision Trees (69%-97%). However, relying solely on online
posts to detect depression may introduce noise and unre-
liability, as social media posts often do not accurately re-
flect true mental health status. Al-Nafjan et al. (2024) [5]
explored the underutilized potential of GSR signals for de-
tecting anxiety, achieving classification accuracies of 96.9%
and 98.2% using SVM, KNN, and Random Forest. How-
ever, its detection capability is restricted solely to anxiety.
Fernandez et al. (2024) [6] examined stress detection using
EEG signals and achieved significant improvements by in-
corporating simple statistical features into models such as

LightGBM, CNN, KNN, and SVM. Despite these advance-
ments, unimodal methods face limitations, including over-
reliance on subjective surveys, susceptibility to social de-
sirability bias, and the inability to capture the multifaceted
nature of mental health disorders. Visual data alone, while
useful, often fail to represent the complex emotional and
cognitive aspects of these conditions [7, 8, 9].

To address the shortcomings of unimodal approaches,
multimodal methods have emerged as a more comprehen-
sive solution, combining diverse data sources such as text,
images, audio, and sensor data. These methods integrate
multiple modalities to capture the complex interplay of
factors influencing mental health. Park et al. (2022) [10]
proposed a multimodal attention-based system utilizing
text and speech data, achieving accuracies of 66% and
74%, respectively, through BERT-based embeddings. Al-
though the model is non-invasive, it detects only depression
through text and speech, while speech-based signals are
susceptible to environmental noise interference, affecting
reliability. Xie et al. (2022) [11] introduced a CNN-LSTM
model that achieved 83.78% classification accuracy using
video-based data from SDS and SAS tests, though envi-
ronmental factors posed challenges. Mo et al. (2022) [12]
explored integrating text and image data for anxiety de-
tection, highlighting the potential of multimodal systems
to improve diagnostic accuracy. Marriwala et al. (2023)
[13] developed a hybrid deep learning model combining tex-
tual and audio features with CNN and Bi-LSTM, achieving
superior performance on DAIC-WoZ data. Shadid et al.
(2023) [1] advanced a non-intrusive late multimodal fusion
method, combining text and image data using six machine
learning techniques. For image data from KDEF and CK+
datasets, convolutional neural networks with real Gabor fil-
ters achieved up to 97.62% accuracy. Incorporating facial
landmark and Gabor features proved effective in address-
ing environmental challenges, enhancing the reliability of
image-based systems. The requirement for fixed-length in-
put in fusion is unnecessary, limiting variance. The study
(2024) [14] explores stress detection using wearable biosen-
sors and the WESAD dataset, identifying EDA as the most
significant signal. XGBoost achieves 98.8% accuracy and
98.7% F1-score using ACC, EDA, ECG, TEMP, and RESP,
enabling a lightweight model for wearable biofeedback de-
vices. Zhu et al. (2025) [15] propose MTNet, a multimodal
transformer combining eye tracking and EEG for depres-
sion detection, achieving 91.79% accuracy with intermedi-
ate fusion yielding the best performance, which is also an
invasive method. Park et al. (2025) [16] use ML mod-
els on VR therapy data to predict anxiety symptoms in
SAD patients, with CatBoost achieving AUROCs of 0.852
(social phobia) and 0.866 (cognitive symptoms), and mul-
timodal models outperforming unimodal ones. However,
despite their potential, multimodal methods must account
for user preferences, as invasive detection techniques can
lead to feelings of discomfort, stigma, and embarrassment,
deterring individuals from seeking help [17, 18, 19]. Ad-
ditionally, over-engineering multimodal systems can intro-
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duce unnecessary complexity, making them less practical
for real-world applications.

3. PROPOSED METHOD

The process (Figure 1) begins with preprocessing text
and image data, followed by splitting it into training, val-
idation, and testing sets. To enable fusion, a lightweight
“common-string” merging technique ensures dimensional
alignment by assigning each prediction a unique key. Only
outputs with matching keys are merged, preserving seman-
tic consistency without complex feature alignment. Af-
ter preprocessing, models including Convolutional Neu-
ral Networks (CNNs), Fully Connected Neural Networks
(FCNNs), and eight machine learning algorithms: Naive
Bayes, XGBoost, Decision Tree, Random Forest, Light-
GBM, CatBoost, Support Vector Machine (SVM), and k-
Nearest Neighbors (K-NN) are applied. CNN and FCNN
outputs, along with GridSearchCV-optimized classifiers,
feed into a late fusion model using neural networks. The
fused data is stored in a unified dataframe and processed
through the model. Random Under-sampling (RUS) ad-
dresses class imbalance, and dropout layers in CNN, FCNN,
and Feed Forward Neural Network (FFNN) reduce overfit-
ting, enhancing generalization.

Figure 1: MNMD’s workflow

3.1. Image Data Processing Stage
To further validate the method, individual models are

evaluated based on their respective modalities in the results
and discussion section. As noted earlier, the Convolutional
Neural Network (CNN) handles image classification using
Gabor features, while the Fully Connected Neural Network
(FCNN) is used for classifying images based on facial land-
mark features.

3.1.1. FCNN with Landmark-Based Features
The Fully Connected Neural Network (FCNN) predicts

mental disorders using facial landmark coordinates (x, y)
extracted via the Dlib library. It comprises three dense lay-
ers with 128, 64, and 32 units, each followed by LeakyReLU
activation (alpha = 0.1) to prevent neuron inactivity. Batch
normalization stabilizes training, while dropout layers (0.4,
0.3, 0.2) and L2 regularization (0.01) mitigate overfitting.
A softmax-activated output layer provides class probabil-
ities. Training is optimized using EarlyStopping (after 10
stagnant epochs) and ReduceLROnPlateau (factor of 0.1)
to improve convergence when validation accuracy plateaus.

Figure 2: Facial landmark features

3.1.2. CNN with Gabor-Based Filters
The Convolutional Neural Network (CNN) model in-

corporates a Real-Gabor filter to extract texture, orienta-
tion, and frequency features while preserving spatial struc-
ture, ideal for facial expression detection (Figure 3). It in-
cludes three convolutional layers (6, 16, and 64 filters) with
MaxPooling and Dropout (0.3) to reduce spatial dimen-
sions and prevent overfitting. ReLU activation adds non-
linearity, and the output is flattened and passed through a
fully connected layer with 128 units and another Dropout
layer. The final softmax layer performs binary classifi-
cation. EarlyStopping stops training after 10 stagnant
epochs, while ReduceLROnPlateau lowers the learning rate
by 0.1 when validation accuracy plateaus to improve con-
vergence.

Figure 3: Before and After Gabor filtering

3.2. Text Data Processing Stage
Classifiers were chosen for complementary strengths,

Decision Tree and Random Forest (interpretability, robust-
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ness), k-Nearest Neighbors (local similarity), Support Vec-
tor Machine (high-dimensional modeling), XGBoost, Light-
GBM, CatBoost (efficient nonlinear learning), and Naive
Bayes (sparse DASS-21 data). Hyperparameters (SVM’s
C and kernel, tree depths/min_samples, boosting learning
rates/estimators, k-NN’s n_neighbors) were optimized via
GridSearchCV, and all DASS-21 scores were computed and
features standardized to ensure uniform scaling.

3.3. Fusion Data Processing Stage
In the fusion preparation stage (Algorithm 1), predicted

image, text, and DASS-21 outputs are first aligned by ap-
pending “common strings,” irrelevant features are dropped,
and only matching records are merged. The resulting dataset
is partitioned with Dask, balanced via random under-sampling,
split into training, validation, and test sets, and then used
to train the Feed Forward Neural Network (FFNN).

Algorithm 1: Fusion Data Processing Algorithm
Input: Predicted Gabor Data, Landmark Data,

Text Data, DASS-21 Determinants
Output: Trained Feedforward Neural Network

(FFNN) model
1 Step 1: Augment Data with Common

Strings;
2 foreach data point do
3 Append common strings to text and image

data based on predicted labels;
4 end
5 Step 2: Feature Analysis and Selection;
6 Perform feature analysis and eliminate irrelevant

or redundant features;
7 Step 3: Data Fusion using Common-string ;
8 Fuse datasets by performing a Cartesian product

between data points where their common strings
match;

9 Step 4: Preprocessing and Deduplication;
10 Apply preprocessing techniques and remove

duplicates;
11 Step 5: Data Partitioning;
12 Partition the preprocessed data into manageable

chunks using Dask;
13 Step 6: Feature-Target Separation;
14 Separate the data into independent features and

target variables;
15 Step 7: Class Balancing;
16 Apply random under-sampling to balance class

distributions;
17 Step 8: Data Splitting;
18 Split the balanced dataset into training, validation,

and testing sets;
19 Step 9: Model Training;
20 Train the FFNN model using the fused and

prepared data;

The fusion data preparation involves adding a ”com-
mon string” key to each prediction record, aligning Ga-
bor, landmark, and text-based outputs. This method en-
sures that only semantically relevant samples are matched,
avoiding data loss and expensive feature alignment.

4. Results and Discussion

4.1. Dataset
This study utilizes the CK+48 [20], KDEF [https://kdef

.se/], and DASS-21 datasets [available on clinical platforms
like https://www.healthfocuspsychology.com.au/tools/dass-
21/]. The CK+48 dataset includes 981 image sequences
for facial expression recognition, with participants ensur-
ing clean skin and proper lighting. It covers seven expres-
sions: anger, contempt, neutral, disgust, fear, happiness,
and sadness. The KDEF dataset contains 2900 images with
a similar collection process, except that images remain in
RGB mode instead of being converted to grayscale.

(a) (b)

Figure 4: Samples of Facial Expression from CK+; a =
Happy, b = Sad

(a) (b)

Figure 5: Samples of Facial Expression from KDEF; a =
Happy, b = Sad

The DASS-21 dataset, comprising 581 data points, was
collected by the author of [1, 2]. To augment the dataset,
data augmentation technique was applied, increasing the
sample size to 2000. This synthetic augmentation did not
harm model performance; in fact, larger datasets led to
improved results. The 21-indicators or determinants, the
responses and the range of scores of the disorders are men-
tioned in the Table 1 and Table 2.

4.2. Data Preprocessing
Text data analysis starts with preparing the data by

handling null values and duplicates, followed by scoring
based on participant responses collected via Google Forms
in [1, 2]. Disorder classification (depression, anxiety, stress)
is determined by the DASS-21 equation: score = sum of
each determinant’s rating points * 2, with ratings
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No. Features No. Features
1 Found hard to wind

down
11 Felt down-hearted

and blue
2 Dryness of mouth 12 Getting agitated
3 Could not experience

the positive feeling
13 Close to panic

4 Difficulty in breath-
ing

14 Difficult to relax

5 Difficult to work up
the initiative to do
things

15 Unable to become
enthusiastic

6 Overreact to situa-
tions

16 Aware of the action
of the heart in the
absence of physical
exertion

7 Experience trem-
bling

17 Felt was not worth
much as a person

8 A lot of nervous en-
ergy

18 Intolerant to getting
what I was doing

9 Nothing to look for-
ward

19 Felt scared without
any good reason

10 Worried about panic
and making a fool of
themselves

20 Felt life was mean-
ingless

21 Touchy

Table 1: Features of DASS-21 Dataset

Category Questions
D (Depression) Q3, Q5, Q10, Q13, Q16, Q17, Q21
S (Stress) Q1, Q6, Q8, Q11, Q12, Q14, Q18
A (Anxiety) Q2, Q4, Q7, Q9, Q15, Q19, Q20

Table 2: DASS-21 Questions Distribution

ranging from 0 (not applicable) to 3 (very much applica-
ble).

For image data, KDEF images are resized to 48x48
pixels, converted to grayscale, and normalized using the
Gabor filter. Dlib’s face detector is used for landmark de-
tection. Emotion remapping links emotions to their corre-
sponding disorders. The preprocessed data is stored in a
dataframe and divided into three subsets: training, test-
ing, and validation. The model is trained on the training
set and evaluated using the testing and validation sets.

4.3. Experiment Results
The DASS-21 dataset was augmented via bootstrap

sampling to balance classes and increase variance with custom-
noise synthetic samples, validated its suitability, and op-
timized model hyperparameters using GridSearchCV. For
image data, Gabor filters extract sharp edges, while dlib
detects 68 facial landmarks to capture detailed regional
features.

Condition Depression Anxiety Stress
Normal 0-9 0-7 0-14
Disorder ≥ 10 ≥ 8 ≥ 15

Table 3: Scoring and Labeling for Depression, Anxiety, and
Stress

4.3.1. Outcomes of the suggested MNMD model (FFNN)
on fusion data

Before training the FFNN model, the text and image
data were combined using the proposed MNMD method.
The FFNN model was then trained on this fused data,
functioning as the MNMD model. The table (Table 4)
shows the classification performance of the FFNN-MNMD
model, achieving high F1 scores (96- 99%) in the depres-
sion, anxiety, stress and normal states. With an overall
accuracy of 98.43%, the model demonstrates excellent re-
liability in distinguishing these mental health states.

Figure 6: Feature fusion technique of MNMD: The merging
technique aligns the data points together only if the target
label (common-string) matches

Class Precision Recall F1-Score
Depression 97% 96% 97%
Anxiety 98% 99% 98%
Stress 98% 95% 96%
Normal 98% 100% 99%
Accuracy 98.43%

Table 4: Classification Report of FFNN-MNMD

K=10 folds cross-validation is commonly used as it bal-
ances bias and variance, offering reliable performance esti-
mates (Table 5) with manageable computational cost.

4.3.2. Outcomes of GridSearchCV with ML Models, CNN-
FCNN on images with Real-Gabor Filter and DLib

In this research, among the eight machine learning mod-
els tested (Naive Bayes, XGBoost, Decision Tree, Random
Forest, SVM, LightGBM, CatBoost, and K-NN), Grid-
SearchCV identified Support Vector Machine (SVM) as the
best-performing model (Table 6).

The images from the CK+ dataset originally have a
resolution of 48x48 pixels, while KDEF images are col-
ored with a resolution of 562x762 pixels. To combine these
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Fold Validation Accu-
racy

Validation Loss

1 0.9651 0.2990
2 0.9822 0.2124
3 0.9722 0.2375
4 0.9942 0.1697
5 0.9869 0.1972
6 0.9844 0.2439
7 0.9715 0.2757
8 0.9850 0.2105
9 0.9422 0.3337
10 0.9801 0.2149
Average 0.9851 0.2270

Table 5: K-Fold Cross Validation Results for the MNMD
Model

Metric Before Tuning After Tuning
Accuracy 90.50% 99.25%
Error Rate 9.50% 0.75%
Precision 90.55% 99.26%
Recall 90.50% 99.25%
F1 Score 90.44% 99.25%

Table 6: SVM (Best Model) Performance Before and After
Hyperparameter Tuning using GridSearchCV

datasets, KDEF images were converted to grayscale and
resized to 48x48 pixels. The combined dataset was then
used to train CNN and FCNN models. The research cate-
gorized emotions into Positive and Negative arousal classes
(Table 7).

4.3.3. Suggested Approach Vs Existing Approaches
This subsection presents two key findings from the re-

search. The first, and most significant, is a comparison of
the proposed approach with existing methods. The second
is a comparison between the machine learning algorithms
utilized, which were fine-tuned with hyperparameters, and
the methodologies employed in previous studies [2, 1].

MNMD vs Existing Approaches:
The Multimodal Data Late Fusion model demonstrated

excellent performance compared to other existing algorithms.
Its simplicity and straightforward design contributed to
achieving an impressive accuracy of 98.43%.

The study used a Z-test to compare (Table 8) the ac-
curacies of two models, determining whether the observed
difference in correct predictions is statistically significant.
This test is suitable when the models have different class
distributions and accuracy is the only available metric. It
helps researchers assess whether the accuracy difference is
due to random chance or reflects a true difference in model
performance. The comparison table (Table 9) shows the

Model Class Preci-
sion

Re-
call

F1-
Score

Acc.

CNN Negative 91% 96% 94% 92%Positive 93% 84% 88%

FCNN Negative 73% 93% 82% 80%Positive 91% 67% 77%

Table 7: Classification Report for CNN-Gabor Filter and
FCNN-DLib Models

broader spectrum covered by MNMD approach.

Metrics TI-Fusion MNMD
Accuracy 97.62% 98.43%
Number of samples 4481 5504
Z-statistic 2.906
P-value 0.0036
Statistically significant difference in accuracy (p < 0.05)

Table 8: Comparison using Z-test (The probability value
(p < 0.05) is the standard threshold and it is also used in
comparison for TI-Fusion [1])

Feature TI-Fusion MNMD
Accuracy 97.62% 98.43%
Disorder
Coverage

Anxiety Depression, Anxi-
ety, Stress

DASS-21
Feature

7 21

Image Fea-
tures

Gabor Features Gabor and Land-
mark Features

Table 9: Comparison table of the core features and per-
formance metrics of the TI-Fusion [1] and MNMD model
in mental disorder detection, highlighting improvements in
accuracy, disorder coverage, and feature utilization

The bootstrapping method with a custom distribution
increased the DASS-21 sample size to 5501. Landmark de-
tection skipped samples where no faces were detected. The
two-proportion Z-test results show a significant accuracy
difference between the MNMD model (98.43%) and the TI-
Fusion [1] model (97.62%), with a Z-statistic of 2.906 and
a P-value of 0.0037 (p < 0.05). This suggests that MNMD
is more effective for accurate predictions, supported by the
larger sample size of 5504.

Comparing based on claims: The research [1] has
the claim that:

• Equalized test/predicted data size is necessary: TI-
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Fusion requires equal-sized datasets, but common-
key-based fusion does not. Keeping datasets untrimmed
enhances variety, akin to a Cartesian Product ap-
proach. The Cartesian fusion method generates all
possible paired combinations across modalities where
the common strings match. This increases data vari-
ance by exposing the model to diverse cross-modal
interactions. Overfitting is mitigated through regu-
larization techniques such as dropout layers and L2
penalties in the FFNN, and balancing techniques like
random under-sampling. Together, these steps en-
sure that increased variance improves generalization
without compromising model stability.

• Naive Bayes has no parameters: Contrary to the
claim that Naïve Bayes has no parameters, the ”var_
smoothing” hyperparameter in GaussianNB stabilizes
variance, improving accuracy.

4.4. Real-world Testing
To test the fusion model, real-world testing was con-

ducted by collecting image (Figure 7) and text data (Ta-
ble 10) from few individuals experiencing depression, anx-
iety, and stress across professions, with their consent, via
Google Forms. The result of the test is shown in the Ta-
ble 11. This approach relies on practical data analysis to
validate models and support data-driven decision-making.

(a) (b)
(c)

Figure 7: Sample images of subjects used in the study. (a)
Subject-1, (b) Subject-2, (c) Subject-3.

4.5. Enhancements
This section presents enhancements to the MNMD, build-

ing on conventional approaches to address their limitations.
These improvements aim to further optimize the model’s
accuracy, efficiency, and overall effectiveness in classifica-
tion tasks.

1. Non-Invasive: Unlike invasive methods, MNMD en-
sures non-intrusive detection.

2. Improved Data Variance: Integrates landmark and
Gabor features while preserving predicted data for
training. Data augmentation enhances the DASS-21
dataset.

3. Broader Prediction: Accurately classifies four sever-
ity levels; depression, anxiety, stress, and normality
without needing advanced systems.

Question Subject-1 Subject-2 Subject-3
Q1 (Stress) 0 1 0
Q2 (Anxiety) 0 1 1
Q3 (Depression) 0 1 1
Q4 (Anxiety) 0 1 0
Q5 (Depression) 1 1 1
Q6 (Stress) 0 0 2
Q7 (Anxiety) 0 1 0
Q8 (Stress) 0 1 0
Q9 (Anxiety) 0 1 0
Q10 (Depression) 0 1 0
Q11 (Stress) 0 0 2
Q12 (Stress) 0 1 1
Q13 (Depression) 0 1 0
Q14 (Stress) 0 1 1
Q15 (Anxiety) 0 1 0
Q16 (Depression) 0 1 1
Q17 (Depression) 0 1 1
Q18 (Stress) 0 1 0
Q19 (Anxiety) 0 0 0
Q20 (Anxiety) 0 1 0
Q21 (Depression) 0 1 0

Table 10: DASS-21 responses from three subjects across
stress, anxiety, and depression indicators.

Category Subject-1 Subject-2 Subject-3
Depression 3.43% 98.91% 40.48%
Anxiety 3.90% 0.09% 4.18%
Stress 1.10% 0.46% 13.68%
Normality 91.56% 0.53% 41.64%
Disorder None Depression None

Table 11: MNMD’s Prediction of Depression, Anxiety,
Stress, and Normality percentage for the subjects

4. Low Complexity: Simplifies design by avoiding data
trimming, with FCNN used only for landmark fea-
tures.

5. Efficient Computation: Uses dask partitioning to op-
timize training on standard hardware (Ryzen 5 3500U,
10GB RAM). Despite handling 173,904 data points,
processing remains under a minute, enabling use on
lower-end devices.

5. CONCLUSIONS

In this study, MNMD is introduced, a multimodal non-
invasive approach for identifying mental health issues that
combines data from the DASS-21 questionnaire with fa-
cial expressions. The system’s exceptional detection rate
of 98.43% was attained by employing a late fusion method
that combined textual indicators with landmark-based and
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Gabor-based image features, exceeding a number of exist-
ing techniques. A thorough validation process using k-
fold cross-validation and practical evaluation validated the
model’s efficacy and dependability across stress, anxiety,
and depression classes. MNMD is also useful for real-world
mental health diagnosis since it tackles issues like class
imbalance, computational efficiency, and data complexity.
Even though MNMD takes a non-invasive approach, there
may be biases introduced by using facial expression data.
Changes in illumination, camera quality, and participant
demographics (e.g., age, skin tone, or facial structure) can
impact the precision of Gabor feature extraction and land-
mark detection. To guarantee equal performance, future
research should employ techniques like adaptive prepro-
cessing and bias prevention, as well as fairness assessments
across a range of demographics. To avoid abuse, concerns
about privacy must also be resolved by safe data handling,
informed consent, and on-device inference.
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