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Abstract

Acoustic emission (AE) is a non-destructive evaluation (NDE) method
that allows to inspect the internal condition of material by analyzing the
signal which are produced due to the internal change in the condition.
Compared to the present methods, due to simplicity and immense po-
tential, AE has gained attention in knee health assessment. With the ad-
vancement of computational power many researchers have implemented
advanced machine learning (ML) algorithms to characterize the AE sig-
nals which were generated from human knees. However, most of this
research are focused on implementing the unsupervised ML algorithms.
The minimal variability between the AE signals from different knee con-
ditions has posed significant challenges in implementing supervised ML
algorithms which shows the promise to make the diagnosis significantly
simpler than the present approaches. Therefore, this work aims at im-
plementing transfer learning using CNN and wavelet-based images to
classify the AE signals which were generated from the knees of the knee
osteoarthritis of different Kellgren Lawrence (KL) grades. VGG-16 CNN
model has been trained on the images which were generated from AE
signals of the participants. The results shows huge promise of transfer
learning in classifying the AE signals from different knee health condi-

tions
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1. INTRODUCTION

The knee is one of the most intricate joints in the
human body. It comprises three primary bones: the fe-
mur, tibia, and patella. Each of these bones is covered
with articular cartilage at their ends, facilitating seamless
movement and serving as a shock absorber to prevent di-
rect bone contact. Additionally, the synovial fluid and
surrounding ligaments contribute to the joint’s stability
and strength, while the fibrocartilaginous menisci between
the tibia and femur further enhance smooth motion and
structural support [1][2]. Despite its robust architecture,
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the knee remains highly vulnerable to various diseases and
age-related degeneration. One of the most prevalent knee
disorders is osteoarthritis (OA), characterized by the pro-
gressive breakdown of articular cartilage and modifications
in the subchondral bone, leading to pain and inflamma-
tion that significantly affect daily activities [3]. Diagnos-
tic approaches for knee OA include arthroscopy, radiogra-
phy, MRI, fluid analysis, and blood testing. However, each
method has drawbacks: arthroscopy is an invasive surgical
procedure, X-rays fail to capture dynamic knee conditions,
and although MRI is highly effective, it is costly, time-
intensive, and unsuitable for certain patients [4][5]. This
highlights the need for an advanced diagnostic system that
overcomes these limitations. The acoustic emission (AE)
technique presents a promising alternative and has been
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Figure 1: X ray images from differently graded knees using KL method

widely used in various scientific and engineering domains.
AE captures acoustic waves generated by mechanical ac-
tivities within materials, such as crack formation, grain
boundary shifts, and friction between solid surfaces [6][7].
These high-frequency signals can be detected using sophis-
ticated AE systems, providing a viable tool for monitoring
mechanical behavior and potentially improving knee OA
diagnosis [8][9]. The mechanical behavior of the knee pro-
duces AE signals, influenced by factors such as bone move-
ment and cartilage integrity. The deterioration of articular
cartilage and the formation of osteophytes contribute to an
increased number of AE events [10]. Previous research has
demonstrated the feasibility of analyzing knee conditions
through AE signals. Moreover, studies have confirmed
AFE’s sensitivity to early-stage knee OA [10]. Daniela et
al. investigated AE as a biomarker for OA and identified
four preliminary AE biomarkers with diagnostic potential.
However, they emphasized the necessity for improved AE
measurement techniques and further validation of biomark-
ers [11]. In a pilot study assessing AE’s diagnostic accu-
racy for knee OA, Kiselev et al. reported good to excel-
lent accuracy across multiple knee regions, with specificity
values ranging from 0.59 to 0.78 and sensitivity between
0.86 and 1. Nonetheless, the study was constrained by a
small sample size [12]. Similarly, Dagyeong et al. demon-
strated AE’s potential in detecting OA knees by analyzing
AE wave amplitude and frequency [13]. Heyon et al. ex-
plored the correlation between the prospective b-value of
AE hits and knee conditions, obtaining promising results
[14]. Additionally, Khan et al. and Hassan et al. examined
the source localization of AE signals in OA-affected knees,
yielding results that were later corroborated by physicians
[15][16]. Despite significant research on AE’s role in OA di-
agnosis, few studies have focused on the uncertainty, noise,
or partitioning criteria of AE signals from healthy and OA
knees. Previously, large-scale AE data analysis was hin-
dered by limited computational resources and signal pro-
cessing methods. Even with technological advancements,
research on noise characterization in AE signals remains
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scarce. Various machine learning techniques have been
utilized to differentiate OA knees from healthy ones. For
instance, Khan et al. assessed the clustering effectiveness
of the Gaussian Mixture Model (GMM) algorithm on AE
data from both OA and healthy knees [17]. However, pre-
vious studies have explored unsupervised learning and sta-
tistical analysis of AE signals from OA knees, none have
leveraged convolutional neural networks (CNNs) combined
with image classification techniques. With the continuous
advancement of computational power and emerging super-
vised learning methodologies, there is a growing need to
investigate their potential in knee OA diagnosis.

Therefore, this paper aims to implement transfer learn-
ing in CNN on AE signals obtained from different graded
OA knees to classify the signals. AE data were obtained
from 5 different graded OA patients. Preprocessing and
wavelet transformation were performed in order to gener-
ate the images. Later these images were fed as input to the
VGG-16 CNN network. The result from the classification
has been evaluated on the basis of accuracy, F-score, sensi-
tivity and specificity. The rest of the paper is designed as
follows. Section gives introduction to KL-grading in knee
OA and the experimental set up. Section 3 discusses the
implemented CNN architecture; section 4 discusses the re-
sults, and the conclusion is in section 5.

2. KL GRADING BACKGROUND AND
EXPERIMENTAL SET UP

2.1. KL Grading

The Kellgren and Lawrence (KL) grading system, accepted
by WHO in 1961, is the most commonly used knee OA
severity grading system[18]. KL system splits knee OA
severity into 5 grades from grade 0 to grade 4. Fig. 4 shows
X-ray images of different KL graded knees. Physicians usu-
ally inspect a scanned knee X-ray image and then give KL
grades to both knee joints in a very short time period.
The diagnostic accuracy is highly relied on physicians’ ex-
perience and carefulness. In addition, the criterion of KL
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Figure 2: Schematics of the experimental set up. Four AE sensors are attached to the knee which are connected to the AE acquisition system

via amplifiers.
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Figure 3: a) Sensor attachment (b) Sit-stand-sit schematics.

grading is very ambiguous. For example, possible osteo-
phytic lipping and doubtful JSN are used as the criterion
for KL grade 1. Even the same physician may give differ-
ent KL grades for the same knee joint when inspecting at
different time points. The KL intra-rater reliability ranges
from 0.67 to 0.73 in a study conducted by Culvnor et al.
We suppose this low reliability of physicians’ grading to be

rooted in misclassifying the joint’s KL grade to its nearby
grades because of the ambiguous criterion. In clinical diag-
nosis, misclassifying the grade of a knee joint to its nearby
grade (e.g., grade 1 to grade 2) is far less serious than mis-
classifying the grade to be far away (e.g., grade 1 to grade
4).
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Figure 4: Data processing and image generation steps

2.2. Ezperimental setup and data preprocessing

AE data were captured from participants’ knees in five
groups, separated by diagnosed knee condition. The physi-
cians of Tsuruta Orthopedic Hospital diagnosed the knees
of the participant and graded according to the knee damage
status. The grading system followed the KL grading sys-
tem. However, for the simplicity of the network KL0, KL1
and KL2 groups were counted as one group. In a result,
the classification network is designed to classify AE hits
from 3 different groups. Four AE sensors (R6a, Physical
Acoustic Corporation) were employed, with an operating
frequency range of 35-100 kHz and a resonant frequency of
55 kHz. The acquisition system was managed by AEWin
software, with the sensors connected via pre-amplifiers pro-
viding a 40 dB gain. Knee movement angles were recorded
using two-channel goniometers (SG150, Biometrics Lim-
ited). Four AE sensors were placed close to the knee joint;
their positioning was deliberated to reduce noise originat-
ing from surrounding tissues, muscles, and tendons. Two
sensors were mounted to the femur and two to the tibia.
The lateral condyle of the tibia, the medial epicondyle of
the femur, the medial condyle of the tibia, and the lateral
epicondyle of the femur are the corresponding locations of
sensors 1 through 4, respectively. A highly elastic medical
tape (ELASTPORE-HADA, NICHIBAN CO., LTD.) was
used to attach the sensors to the knee. Vacuum-type cou-
pling gel (Shin-Etsu HIVAC-G, Shin-Etsu Chemical Co.,
Ltd.) was used between the knee and sensor surfaces. The
purpose of the elastic tape and gel was to maintain con-
stant contact between the surfaces. At the start of the
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experiment, the goniometer was initially set to 90 degrees
for the subject’s sitting position and 0 degrees for the sub-
ject standing position, which was attached to the knee us-
ing two-sided tapes. As a result, a sit-stand-sit movement
cycle encompassed 180 degrees. That movement’s three
cycles were regarded as a single set. Five sets of informa-
tion were obtained from each participant. Furthermore, an
amplitude threshold of 45 dB was applied during the data
acquisition procedure. The threshold was raised to 50 dB
during the preprocessing stage to lessen the skewness of the
data. This method’s implications allowed for the removal
of the majority of the noisy data. A pre-trigger value of 256
was used to set the sampling rate to 5 MSPS throughout
the data-capturing process. Peak Definition Time (PDT),
Hit Definition Time (HDT), and Hit Lockout Time (HLT)
were set to 200, 800, and 1000 microseconds, respectively,
to control the obtained envelope of the hit signals, with a
maximum data collection time of 1000 milliseconds.

2.8. Data preprocessing and image generation
In this study, continuous wavelet transform (CWT) was
employed to generate time-frequency representations of acous-
tic emission (AE) signals recorded from human knees. These
scalograms serve as the input to a convolutional neural net-
work (CNN) designed to classify knee osteoarthritis (OA)
severity. The preprocessing steps include signal selection,
wavelet denoising, transformation, and image generation.
Signal Preprocessing

The AE signals were sampled at a high frequency of
fs=1 MHz to capture the intricate mechanical emissions
from the knee joints. To ensure consistency across different
signal recordings, each signal was truncated to a specific
range, denoted as s(n) where discrete time samples repre-
sent. The selected segment ranged from 500 to 3500 data
points:

s(n) = Ss500:3500(1) (1)
where s(n) is the original signal matrix. Wavelet-Based
Denoising

To suppress noise while preserving transient features,
wavelet denoising was applied using the Symlet-2 (sym?2)
wavelet basis. The maximum decomposition level was de-
termined as:

Lmax = I_lOgQ(N)J (2)
Where N is the signal length. The denoising process em-
ployed a Bayesian thresholding strategy with a hard thresh-

olding rule, ensuring that noise components were mini-
mized while retaining the dominant signal characteristics:

$da(n) = Waenoise(8(1), Lmax, Bayes, Hard) (3)

where Wdenoise represents the wavelet denoising function.
Continuous Wavelet Transform and Normalization
The preprocessed signal was subjected to CWT using a
filter bank with 12 voices per octave. The transformation
is defined as:

Clab) = / 5a(n) 07 4(n) dn (4)
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Figure 5: Block diagram of VGG-16 network architecture

Where C(a,b) the wavelet coeflicients at scale a and shift b
and 1} ,(n) is the complex conjugate of the wavelet func-
tion. The wavelet coefficients were subsequently normal-
ized using:

C(a,b) — p

g

C'norm(aa b) = (5)
Where 1 and o are the mean and standard deviation of
C(a,b), respectively.

Scalogram Image Generation

The normalized wavelet coeflicients were visualized using a
scalogram, where the x-axis represents time samples, and
the y-axis represents the selected scale range (35 to 90).
The scalogram was plotted using a colormap, with axes
and labels removed to ensure optimal feature extraction
by CNN. The images generated were saved as PNG files.
These images were stored in predefined directories based
on the Kellgren and Lawrence (KL) grading system. The
process was repeated for all signals in the dataset, resulting
in a robust dataset of scalograms suitable for deep learning-
based classification of knee OA severity.

3. VGG-16

VGG-16 is a deep convolutional neural network (CNN)
architecture that has significantly influenced image clas-
sification and feature extraction in computer vision. Pro-
posed by Simonyan and Zisserman in 2014, VGG-16 gained
prominence for its structured and deep architecture, achiev-
ing a top 5 accuracy of 92.7% on the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC). The model con-
sists of 16 weight layers, including 13 convolutional layers
and 3 fully connected layers, followed by a SoftMax clas-
sification layer. It employs small 3x3 convolutional filters

KLO12 26.1%

KL3 17.7%

True Class

KLd 9.8%

KLO12 KL3 KL4
Predicted Class

Figure 6: Confusion matrix from validation set after the training

with a stride of 1, preserving spatial resolution while cap-
turing fine-grained details. The depth of the network en-
ables hierarchical feature extraction, progressively captur-
ing low-to-high-level representations. Max pooling layers
with a 2x2 filter and a stride of 2 are applied after every
few convolutional layers, reducing spatial dimensions while
maintaining critical information. The fully connected lay-
ers, each with 4,096 neurons, contribute to the large num-
ber of 138 million parameters, making VGG-16 computa-
tionally intensive. Mathematically, the number of param-
eters in a convolutional layer is given by:

P = (K2 X Cin X Cout) + Cout (6)
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Table 1: Summary of the performance metrics for each class and macro-averaged scores

Class Precision Sensitivity F1 Score Macro Macro Macro Overall
Precision Sensitivity Fl-score Accuracy

KLO012 0.7838 0.7387 0.7606

KL3 0.8430 0.8233 0.8331 0.8193 0.8212 0.8195 0.8193

KL4 0.8310 0.9017 0.8649

where K represents the kernel size (3x3), and and are the
number of input and output channels, respectively. The
fully connected layers follow:

P:Nin ><J\fout"'1\fout (7)

where Nj, and N,y are the number of neurons in adja-
cent layers. These equations illustrate the computational
burden imposed by the fully connected layers. VGG-16's
structured design, which maintains uniform kernel sizes
throughout, simplifies implementation and interpretation.
However, the model’s high memory consumption and slow
inference speed pose challenges, particularly for real-time
applications. Despite these limitations, VGG-16 remains
widely utilized in various domains, including medical imag-
ing, autonomous vehicles, biometric recognition, and acous-
tic emission-based diagnostics, where it serves as a robust
feature extractor. Its effectiveness in transfer learning has
also contributed to its extensive adoption in deep learn-
ing research. While more efficient models such as ResNet
and EfficientNet have emerged, VGG-16 continues to be a
foundational architecture in CNN-based applications.

4. RESULT AND DISCUSSION

The classification performance of the proposed deep learn-
ing model was evaluated using standard metrics, includ-
ing overall accuracy, precision, sensitivity (recall), and F1-
score. The model achieved an overall accuracy of 81.93%,
demonstrating its efficacy in distinguishing between differ-
ent classes of acoustic emission signals associated with knee
osteoarthritis (OA).

4.1. Performance metrices analysis

The precision values for the individual classes were 0.7838
for K1.012, 0.8430 for KL.3, and 0.8310 for KI4, indicating
that the model effectively minimizes false positive classi-
fications across all severity levels. The macro-precision of
81.93% further supports the reliability of the classification
outcomes. Sensitivity, also known as recall, was observed
to be 0.7387 for KLO012, 0.8233 for KL3, and 0.9017 for
KL4. The relatively high recall values suggest that the
model is capable of correctly identifying most instances
of each class, with the highest recall achieved in the KL4
class (90.17%), signifying strong recognition ability for that
category. The Fl-score, which provides a balanced mea-
sure of precision and recall, was calculated as 0.7606 for
KL012, 0.8331 for KL3, and 0.8649 for KL.4. The macro-
averaged values for precision, sensitivity, and F1-score were
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81.93%, 82.12%, and 81.95%, respectively, indicating con-
sistent performance across the dataset. The slight varia-
tion in precision and recall suggests that while the model
is effective at correctly identifying instances, there is still
room for improvement in reducing misclassifications.

4.2. Confusion matrix interpretation

The confusion matrix (Figure 6) provides further insight
into the classification performance by illustrating the dis-
tribution of correctly and incorrectly classified instances.
The majority of the diagonal elements indicate a high num-
ber of correctly classified samples, reinforcing the strong
performance of the model. However, some misclassifica-
tions were observed, particularly between KL0O12 and KL3,
as well as between KL3 and KL4, highlighting the need for
further refinement in feature extraction and augmentation
techniques to improve class separability.

5. Conclusion

In this study, a deep learning-based approach utiliz-
ing scalogram images was developed to classify acoustic
emission signals from knee joints with different severities
of osteoarthritis. The model achieved an overall accuracy
of 81.93%, demonstrating its effectiveness in distinguish-
ing between KLO012, KL3, and KIL4 severity levels. The
high sensitivity and F1-scores indicate that the approach
successfully captures key signal characteristics, making it
a promising tool for automated OA assessment. While the
model shows strong performance, further improvements
can be achieved through enhanced preprocessing techniques,
dataset expansion, and optimization of model architecture.
Future research could explore transfer learning and hybrid
models to further refine classification accuracy. These find-
ings highlight the potential of deep learning methods in
biomedical signal processing, paving the way for more ad-
vanced, non-invasive diagnostic tools for osteoarthritis de-
tection.
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