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Abstract
This paper introduces a deep learning-based approach for automated
classification of local structural element failure modes in post-earthquake
buildings using image-based data. Addressing the critical challenge
of limited training datasets in the structural/earthquake engineering
domain, targeted, domain-informed data augmentation and synthetic
data generation techniques are proposed to enhance dataset size and
diversity. The model architecture and preprocessing pipeline are explicitly
designed to capture damage-sensitive features in images that are essential
for informed decision-making on structural integrity of the building, thus
extending beyond conventional classification tasks. Dataset enhancement,
transfer learning and model regularisation techniques are integrated to
ensure alignment of model predictions with expert domain judgement.
Achieving 0.93 (93%) accuracy, precision, recall and F1-score, the
developed model exhibits robust generalisability without overfitting,
demonstrating clear potential for practical deployment in disaster
resilience and infrastructure recovery efforts.
Contribution of the Paper: The development of a tailored deep
learning-based approach that integrates domain-informed dataset
enhancement, transfer learning and targeted regularisation techniques,
specifically designed to reliably classify local structural element failure
modes from limited, image-based post-earthquake data to support
expert-informed structural integrity decisions.
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1. INTRODUCTION

Over the past century, numerous major earthquakes
have caused partial to complete collapse of building
structures worldwide, leading to significant loss of life and
severe economic impacts [1]. Investigations carried out after
these events have shown that many structures requiring
damage inspections can be significantly high [2]. The effects
of natural disasters, such as earthquakes, have intensified
considerably in recent times [3]. The growing impact of
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earthquakes on infrastructure assets, such as buildings,
highlights the need for rapid and accurate assessment of
their sustained seismic damage. These assessments are
essential to enable timely and informed decision-making
on occupant safety, understanding structural behaviour
during seismic events, and developing effective retrofit
strategies. Typically, post-earthquake damage assessments
are conducted by qualified engineers in person, on site,
in accordance with established post-earthquake damage
assessment guidelines and design codes. These assessment
processes can be cumbersome and delayed in areas with
frequent earthquakes or poor construction practices
[4]. Such delays can increase assessment costs and
extend the need for temporary housing. Therefore, a
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rapid and accurate assessments that allow for quicker
decisions, resulting in retrofitting strategies, that will
enable communities to swiftly return to normalcy [5].

Qualitative methods, such as visual inspections, field
assessments, and image-based damage detection, are the
most common approaches for assessing post-earthquake
damage in reinforced concrete (RC) buildings, which is
performed by qualified engineers or building inspectors [6].
These approaches visually detect damage indicators, such as
cracks, spalling, crushing, buckling of steel reinforcement or
residual deformation in structural elements. These damages
are then classified manually according to standardised
damage assessment guidelines and design codes to assess
the building’s overall condition. There are several types
of classification tasks involved in post-earthquake damage
assessments, such as identifying element failure modes,
damage features and damage levels, as shown in Figure
1. Among these, classifying element failure modes is the
most important for determining the structural integrity
of a building. However, relying on manual processes
for failure mode classification often results in subjective
interpretations, leading to errors or omissions [7]. Moreover,
these processes are time-consuming, labour-intensive, and
can be compromised by dangerous working conditions,
reducing its reliability [8]. Based on these failure mode
classifications, engineers use post-inspection structural
assessment techniques to simulate the building’s response
to seismic loads and quantify the induced damage under
seismic loads.

There is an urgent need for a rapid and accurate
method to classify element failure modes in damaged
buildings using image-based data, given the frequent
occurrence of earthquakes and the widespread presence of
substandard buildings in many disaster-prone areas globally.
In response to this demand, deep learning (DL), known for
its strong performance in classification and prediction tasks,
is increasingly being explored as a promising solution in the
structural/earthquake engineering domain. However, it is
well established that DL techniques typically require large,
balanced datasets to perform classification tasks effectively.
This presents a major challenge in structural/earthquake
engineering domain, where datasets are inherently small
and often unbalanced due to the scarcity of pre-existing
repositories and the cost and practical difficulties associated
with collecting data. Therefore, this paper investigates
methods to enhance dataset size and diversity by evaluating
the suitability of various data augmentation and synthetic
data generation techniques to simulate realistic damage
features in images representing element failure modes -
a classification task that has, to date, received limited
attention in existing research. Additionally, this paper
explores the application of transfer learning and model
regularisation techniques to adapt the DL model for
improved performance with small, domain-specific datasets,
as such in structural/earthquake engineering domain.

Figure 1: Image-based damage classification tasks contributing
to structural integrity evaluations

2. RELATED WORK

The damages in structural local elements, such as
columns, beams, masonry walls, and slabs are classified
relying on still images, typically captured using handheld
cameras, to provide detailed, micro-level visual data
of specific structural components, as such damage
is often located within the interior of the structure.
DL-based approaches are the most widely utilised methods
for post-earthquake structural damage classification
using image-based data [9]. Among the DL-based
approaches, pre-trained convolutional neural network
(CNN)-based models are the most employed DL techniques
in post-earthquake damage classification, owing to their
exceptional capabilities in performing classification and
prediction tasks [10]. Therefore, this section critically
examines the challenges encountered when applying CNN
models to datasets within the structural/earthquake
engineering domain. The primary goal is to identify
feasible strategies to foster domain generalisation and
mitigate overfitting, thereby enhancing the robustness and
applicability of pre-trained CNN models within this domain.
The network architecture of CNNs is illustrated in Figure 2.

Figure 2: Network architecture of convolutional neural networks

Although widely adopted, CNNs face challenges in
the context of image-based damage classification tasks,
largely stemming from dataset limitations, modelling
issues, and operational constraints. A lack of diversity
in datasets in structural/earthquake engineering domain
restricts the generalisation of models to varied scenarios,
while imbalanced datasets exacerbate issues by skewing
predictions towards dominant classes and misclassifying
under-represented damage types [11]. Similarly, small
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datasets in earthquake /structural engineering domains
compared to other disciplines, lead to model overfitting,
thereby compromising the model’s performance in
real-world applications [12]. Moreover, challenges arise in
detecting subtle structural damage, such as surface cracks
or minor failures, which often go unnoticed due to the
limitations of input features or the complexity of damage
scenarios [13]. Variability in image quality that is caused
by factors, such as lighting, resolution, occlusion and noise,
further hinders accurate classification and segmentation [14].
Technical constraints, such as the dependency on manual
labelling are labour-intensive and introduce subjectivity,
which limits model scalability [15].

Several strategies have been proposed to address these
challenges and improve the application of CNNs in damage
classification in recent literature. Transfer learning using
pre-trained models, can effectively address issues of data
scarcity [16]. Transfer learning involves training a new
model using pre-trained CNN models, employing either
or both feature extraction and fine-tuning methods, as
illustrated in Figure 3.

Figure 3: Transfer learning techniques adopted in convolutional
neural network models

This approach leverages an existing model and dataset,
originally used for a different task, to train a new model on
the target dataset. In the feature extraction method, all
layers of the pre-trained model are kept frozen, enabling
the automatic extraction of generalised features from the
new dataset. In contrast, fine-tuning involves unfreezing
certain layers, typically the final ones, to adjust the model’s
hyperparameters, ensuring better alignment with the new
dataset. However, the most appropriate pre-trained CNN
model, and its performance with feature extraction and/or
fine tuning with the target dataset was evaluated before
applying the model for the classification/prediction task.

Expanding datasets to include diverse damage
geometries and various earthquake scenarios is essential
[11]. To achieve dataset expansion, techniques such
as data augmentation and synthetic data generation
(Figure 4), which enhances variability by simulating
real-world conditions are being used. In recent years,
researchers rely on augmented datasets due to insufficient

availability of data for training models [17]. However, if
augmentation/synthetic data generation techniques are
not well-suited to the target dataset, or if there is an
over-reliance on these augmented/synthetic data, the
applicability of pre-trained CNN models to real-world
conditions may be compromised, particularly in novel
earthquake scenarios [18]. Therefore, comprehensive
comparative study on data augmentation and synthetic
data generation techniques, which is essential for identifying
the most effective methods for enhancing datasets within
the structural/earthquake engineering domain is imperative.
This study evaluated commonly used data augmentation
and synthetic data generation techniques to determine
those most appropriate for the target dataset.

Figure 4: Images generated using data augmentation (a) and
synthetic data generation (b) techniques
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3. PROPOSED METHOD

To develop a generalisable and non-overfitting
damage assessment model, this paper employed a
four-step methodology integrating transfer learning, model
regularisation with data augmentation and synthetic data
generation. The details of this method are presented in the
following subsections.

3.1. Dataset Development
Structural element damage is primarily documented

using still images captured during on-site building
inspections using handheld cameras. These image-based
datasets include critical indicators of physical damage in
elements, such as crushed regions, crack patterns, and
measurements of crack length and width. However, there
is a notable lack of publicly available datasets containing
diverse and sufficient imagery of post-earthquake damage
to structural elements, particularly through web-based
repositories. This scarcity is primarily due to the fact
that such data are typically collected and retained by
individual field investigation teams, limiting open access.
A review of existing studies adopting DL techniques for
damage classification tasks, revealed that many researchers
rely on either self-collected or web-scraped datasets,
with total dataset sizes ranging from as few as 50 to
around 4,000 images. These dataset sizes are generally
considered inadequate for training DL models effectively in
classification tasks. To address this limitation, this research
first compiled vast majority of available image data from
open-source web repositories before applying targeted data
augmentation and synthetic data generation techniques to
expand and diversify the dataset.

The dataset development process follows a multi-step
approach encompassing web scraping, data segregation,
data cleaning, quality checks, database structuring,
versioning, and documentation. Images are segregated
based on the element type of the RC building and the
failure mode observed in the damaged element. Columns
are the most critical and vulnerable structural elements in
RC buildings, as their failure can lead to severe damage or
even complete structural collapse. Therefore, this paper
focuses specifically on RC columns as the element type
and considers its two key failure modes: shear failure and
flexural failure, setting the total number of classes for
this classification task to two. Future research can extend
this work by exploring other structural element types and
failure modes. Figure 5 presents a sample of the two-class
dataset utilised in this paper.

Table 1 presents the total original image dataset
depicting shear failure and flexural failure modes in RC
columns, compiled through web scraping the open-source
repositories, from which these relevant images were screened
and selected for further analysis. This reflects the small

and unbalanced datasets that is characteristic of the
structural/earthquake engineering domain.

Figure 5: Reinforced concrete column failure modes in
post-earthquake buildings considered in this paper

Table 1: Initial dataset size of reinforced concrete column failure
modes considered in this paper

Failure Mode Total Images
Column Shear Failure 1048

Column Flexural Failure 857

3.2. Dataset Enhancement
To address the limitation of small datasets in the

structural and earthquake engineering domain for training
DL models, this research explores the enhancement of the
previously compiled dataset using data augmentation and
synthetic data generation techniques [19]. While similar
techniques have been applied in recent studies, there
remains a lack of established understanding regarding their
suitability for domain-specific datasets [20]. Therefore,
it is necessary to evaluate the effectiveness of each
enhancement method in replicating the characteristics
and diversity of the original data, which is an essential step
in developing a model with strong generalisability. The
dataset enhancement techniques employed in this research,
as outlined in Table 2, were selected through informed
decision-making, guided by domain expertise to ensure the
realistic simulation of structural damage features. The
performance of each dataset enhancement technique is
evaluated by training a DL model using each enhancement
technique and subsequently validating and testing the
model on the original data that is new and unseen to the
model before. This approach assesses how effectively each
enhancement technique replicates the characteristics of real,
domain-specific data, thereby indicating its suitability for
mixing into the training dataset of the final classification
model.
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Table 2: Data augmentation and synthetic data generation techniques considered in this paper
Method Technique Parameter

Geometric
Transformation

Rotation 5, 10, 15, 20 degrees
Translation 10, 20, 30 pixels
Scaling 5%, 10%, 15%
Flipping Horizontally

Colour
Space
Augmentation

Brightness 30%
Contrast 30%
Hue/Saturation 60 degrees, 30% saturation factor

Noise
Injection

Gaussian Mild - Mean 0, Standard Deviation 10
Speckle Mild - 0.1 probability from Gaussian
Salt-and-pepper Mild - 0.02 probability

Elastic
Transformation

Cropping 10%
Padding 5%
Stretching 5%
Compressing 5%

Synthetic
Data
Generation

MixUp Combines two images and their labels by taking a weighted
average. This creates interpolated training samples

CutMix Cuts a portion of one image and pastes it onto another, mixing
labels proportionally

CutOut Randomly masks out parts of the image to force the model to
focus on the surrounding context

GridMask Masks out parts of the image in a grid-like pattern to diversify
learned features

GridMix Mix and recombine parts of the various images in a grid-like
pattern to ensure statistical utility in a new image

3.3. Transfer Learning
3.3.1. Pre-trained Models with Feature Extraction

Various pre-trained models that have been utilised for
feature extraction to train models with new data from the
structural/earthquake engineering domain were identified
in literature. To select the most appropriate model for
the dataset of this research, the following models have
been chosen and compared based on their widespread use
and demonstrated positive performance in the domain of
image-based damage assessment: VGGNet (VGG16 and
VGG19) [21], GoogleNet (Inception) [22], Xception [23],
MobileNet [24], DenseNet (DenseNet121, DenseNet169,
DenseNet201) [25], ResNet (ResNet50, ResNet101 and
ResNet152) [26], EfficientNet-B0 [27] and AlexNet [28]. All
the layers in these models have been kept frozen, enabling
the models to extract features from the new target dataset.
As these pre-trained models were originally developed using
datasets from other domains, it is essential to evaluate their
performance in learning features from new target datasets.

3.3.2. Pre-trained Models with Fine Tuning
The pre-trained models exceeding the overall accuracy,

precision, recall and F1 score threshold of 0.70 and meeting
the criteria for overfitting and generalisation checks are
selected for the fine-tuning stage. This step narrows
the pre-trained models listed above, ensuring that only
the most appropriate models are evaluated during the
fine-tuning. At this point, the selected pre-trained models,
which have already extracted features during feature
extraction stage, have a selected number of deeper (top)

layers unfrozen. This approach aims to balance the
retention of pre-learned generic features with the acquisition
of dataset-specific knowledge, ultimately enhancing the
model’s generalisability.

3.3.3. Model Regularisation Parameters
The pre-trained model that demonstrates the best

performance after the feature extraction and fine-tuning
stages is subjected to a comparative analysis of
regularisation parameters, such as the loss function,
regularisation factor, dropout rate and learning rate.
Additionally, model parameters, such as the number of
epochs and the number of unfrozen layers are evaluated to
optimise performance further.

3.4. Model Evaluation
Evaluating the performance of the DL model is essential

for assessing how effectively the model generalises to
new and unseen data that will be provided during field
investigations. A confusion matrix serves as a critical tool
that provides a comprehensive breakdown of the model’s
predictions by comparing them to the actual outcomes [29].
The confusion matrix consists of four key elements:

• True Positives (TP): The model correctly predicted
the positive class

• True Negatives (TN): The model correctly predicted
the negative class

• False Positives (FP): The model incorrectly predicted
the positive class
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• False Negatives (FN): The model incorrectly predicted
the negative class

A confusion matrix helps derive several performance
metrics, such as accuracy, precision, recall, and F1 score,
which provide deeper insights into model performance [29].

• Accuracy measures the proportion of correct
predictions out of the total, giving an overall
sense of the model’s performance. However, it
can be misleading if the dataset is imbalanced, with
significantly more instances of one class than the
other

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

• Precision, or positive predictive value, is the ratio of
correctly predicted positives to all predicted positives.
It is important when minimizing false positives is
critical

Precision =
TP

TP + FP
(2)

• Recall measures the model’s ability to correctly
identify all positive instances, making it essential in
cases where missing positive instances (false negatives)
is costly

Recall = TP

TP + FN
(3)

• F1 score, the harmonic mean of precision and recall,
provides a balanced metric, especially useful when
class distribution is uneven. It balances the trade-off
between precision and recall, offering a comprehensive
view of model performance

F1-Score =
2 · Precision · Recall
Precision + Recall

(4)

To evaluate whether the developed DL model is
overfitting or capable of generalising to new and unseen
data, the following model evaluation techniques, such as
model overfitting and generalisability checks are employed
[30]:

• Check for model overfitting using training accuracy
(TRA) and validation accuracy (VLA) for both
feature extraction and fine-tuning phases [30]:

Training to Validation Gap = TRA− V LA (5)

If this gap is less than, 0.05 the model is considered
safe from overfitting.

• Check for model generalisability using fine-tuning
validation accuracy (VLA) and overall model test
accuracy (TSA) [30]:

Accuracy Gap = V LA− TSA (6)

If this gap is less than, 0.03 the model is considered
to be well generalisable.

• Check for model generalisability using fine-tuning
validation loss (VLL) and overall model test loss (TSL)
[30]:

Loss Gap = V LL− TSL (7)

If this gap is less than, 0.001 the model is considered
to be well generalisable.

4. RESULTS

4.1. Comparison of Pre-trained Models with Feature
Extraction

The performance indicators (accuracy, precision, recall
and F1 score) for the pre-trained models that utilised the
feature extraction transfer learning technique is presented in
Figure 6. The top-performing models from this evaluation,
with their respective accuracy, precision, recall and F1
score values in brackets, include DenseNet169 (0.84, 0.84,
0.84, 0.84), MobileNet (0.83, 0.83, 0.83, 0.83), DenseNet201
(0.81, 0.82, 0.81, 0.81), GoogleNet (0.80, 0.80, 0.80, 0.80),
DenseNet121 (0.78, 0.79, 0.78, 0.78), Xception (0.77, 0.77,
0.77, 0.77), and VGG16 (0.77, 0.77, 0.77, 0.77). Only these
models were subsequently selected for the next stage of the
study, where the model is fine-tuned. It is noteworthy that
MobileNet demonstrated the shortest runtime, completing
the task in 32 minutes, while the VGG16 model had the
longest runtime, with an elapsed time of 4 hours and
23 minutes. In this study, the models were executed
in Python using a cloud-based graphical processing unit
(GPU), specifically an NVIDIA L4 tensor Core GPU with a
22.5 GB random access memory (RAM) available on Google
Colab Pro platform. The dotted line corresponds to the
0.70 threshold accuracy, precision, recall and F1 score was
considered for selecting the models for fine-tuning.

4.2. Comparison of Pre-trained Models with Fine Tuning
Similarly, the performance indicators (accuracy,

precision, recall and F1 score) for the selected models
that were utilised in fine-tuning stage having achieved over
0.70 benchmarking accuracy, precision, recall and F1 score
in the feature extraction stage is presented in Figure 7. The
top-performing model was MobileNet (accuracy, precision,
recall and F1 score: 0.88) which was also the model that
demonstrated the shortest runtime, completing the task in
43 minutes, having improved its performance since feature
extraction stage.
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Figure 6: Accuracy, Precision, Recall and F1 Score of pre-trained
models with feature extraction
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Figure 7: Accuracy, Precision, Recall and F1 Score of pre-trained
models with feature extraction and fine-tuning

4.3. Comparison of Model Regularisation Parameters
The regularisation parameters for the MobileNet model

were compared to identify the optimal loss function
regularisation factor, dropout rate, and learning rate.
Additionally, the optimal model parameters, including the
number of epochs and the number of unfrozen layers, were
evaluated to achieve model generalisation and minimise
overfitting. Table 3 summarises the optimum parameters
identified through this comparative study.

4.4. Comparison of Dataset Enhancement Techniques
The performance of the modified MobileNet model,

trained using data generated from each augmentation
or synthetic data generation technique and validated
and tested with the data from the original dataset, was
evaluated. The performance indicators (accuracy, precision,
recall and F1 score) for each augmentation technique
are presented in Figure 8. The dotted line corresponds
to the 0.70 threshold accuracy, precision, recall and F1
score was considered for selecting the dataset enhancement
techniques for the final model. This analysis reveals
that traditional data augmentation methods, such as
geometric transformations, elastic transformations, colour
space augmentation, and noise injection, performed better
in training the model due to their close similarity to
the original data. Synthetic data generation techniques,
particularly, CutMix and MixUp, demonstrated reasonably
strong performance and proved useful in achieving greater
dataset variation. Consequently, a combination of these
techniques (refer Table 4) was employed to develop the final
dataset used for training the final model.
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Figure 8: Accuracy, Precision, Recall and F1 Score of MobileNet
trained with data augmentation and synthetic data generation
techniques

4.5. Final Model
A final model that combined the original data in Table

1 and the augmented data, resulting in a total dataset of
6156 images for shear failure and 6105 images for flexural
failure, is tabulated in Table 5. The final model’s confusion
matrix is presented in Figure 9.
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Table 3: Optimum model regularisation parameters and model parameters for MobileNet pre-trained model
Type Parameter Optimum Value

Model
Parameters

Image Size 224x224
Batch Size 32
Epochs 25
Total Layers in Model 28
Unfreezing Layers 10

Regularisation
Parameters

Learning Rate 0.00001
Loss Function (L2) Regularisation Factor 0.02
Dropout Rate 0.6
Activation Function Softmax (dense)
Optimiser Adam
Learning Rate Scheduling lambda epoch:

1e-5*10^(-epoch/10)
Early Stopping Patience 2
Batch Normalisation Yes

Table 4: Final dataset combining data augmentation and synthetic data generation techniques considered in this paper
Method Technique Shear Failure Flexural Failure

Geometric
Transformations

Rotation 802 857
Translation 802 857
Scaling 802 857
Flipping 802 857

Colour
Space
Augmentation

Brightness 100 100
Contrast 100 100
Hue/Saturation 100 100

Noise
Injection

Gaussian 200 200
Speckle 200 200
Salt-and-pepper 200 200

Elastic
Transformations

Cropping 200 200
Padding 200 200
Stretching 200 200
Compressing 200 200

Synthetic
Data

MixUp 100 100
CutMix 100 100

Original Images 1048 857
Total 6156 6105

Figure 9: Confusion matrix of final model

As indicated in Table 6, this model attained scores
rounding up to 0.93 (93%) for accuracy, precision,

recall, and F1 score. Notably, achieving identical
values across these four-performance metrics confirms
the dataset’s balanced nature, ensuring that false
classifications/predictions in one class do not disproportionately
affect others. Furthermore, the results from overfitting
and generalisation checks (Table 6) show that the model
reliably predicts outcomes for new and unseen data.

4.6. Future Directions
Based on the results presented in this paper, the

following future research directions are proposed:

• Advancing on synthetic and simulated data generation
via generative adversarial networks (GAN) and/or
3D modelling tools to further enrich model training;

• Incorporating explainability techniques, such as
Grad-CAM to highlight visual damage features in
images to support classification decision making;
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Table 5: Final dataset size of the RC column failure modes considered in this paper
Failure Mode Training (70%) Validation (10%) Testing (20%) Total
Shear Failure 4308 616 1232 6156

Flexural Failure 4270 612 1223 6105

Table 6: Final model performance results
Criteria Matrix / Check Shear Failure Flexural

Failure
Limit

Performance

Accuracy 0.9340 0.9340 N/A
Precision 0.9350 0.9331 N/A
Recall 0.9334 0.9346 N/A
F1 Score 0.9342 0.9338 N/A

Overfitting Training accuracy and validation
accuracy difference (feature extraction)

0.0002 0.05

Training accuracy and validation
accuracy difference (fine-tuning)

0.0100 0.05

Generalisation Fine-tuning validation accuracy and
overall model test accuracy gap

0 0.03

Fine-tuning validation loss and overall
model test loss gap

0.0002 0.001

• Real-world validation of the developed model by
deploying in field assessments in disaster prone
regions;

• Exploring advanced learning paradigms, such as
few-shot and meta-learning approaches to address
data scarcity;

• Integration of multi-modal data, such as structural
engineering metadata and vibration-based data to
improve model robustness.

5. CONCLUSIONS

This paper presents a novel deep learning-based
approach specifically tailored for the automated classification
of local structural element failure modes in post-earthquake
reinforced concrete buildings using image-based data.
Given that traditional visual assessment methods are
time-consuming, subjective and potentially hazardous, this
research directly addresses the critical limitation of small
and unbalanced datasets typical in structural/earthquake
engineering domain. Through targeted, domain-informed
data augmentation and synthetic data generation
techniques, this research effectively enhanced dataset
diversity and size, significantly mitigating overfitting
and improving model generalisation capabilities. By
conducting a comparative evaluation of pre-trained
convolutional neural networks, MobileNet was identified
as the most suitable backbone architecture for the local
element failure mode classification task, achieving notable
improvements from an initial accuracy of 0.83 (83%) to
0.93 (93%) across all performance indicators used in this
paper: accuracy, precision, recall and F1 score. The
tailored model architecture and preprocessing pipeline

ensured the extraction of damage-sensitive visual features
directly relevant for informed structural integrity decisions,
distinguishing this work from standard classification
approaches. Moreover, the key future research directions
proposed in this paper include, enhancing synthetic and
simulated data generation through generative adversarial
networks (GAN) and 3D modelling tools to improve
model training, integrating explainability techniques,
such as Grad-CAM to highlight visual damage features
and support classification decisions, and validating
the developed model in real-world scenarios through
field deployment in disaster-prone regions. These
findings establish transferable knowledge by effectively
integrating advanced AI methodologies with traditional
structural/earthquake engineering practices, together with
the proposed future research directions offer practical
pathways to enhance urban resilience and strengthen global
disaster preparedness.
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