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Abstract
The correlation between different phases of biological data, such as tran-
scriptomics, metabolomics, and other omics, is important in the case of
disease analysis. Multiomics aims to combine diverse omics data into a
unified dataset, revealing interrelationships and their influence on com-
plex biological processes. Although multi-omics methodologies are rela-
tively new, their demonstrated potential to accurately uncover insights
has captured the bioinformatics field. However, limited datasets and
challenges in preparing unbiased models have hindered widespread ap-
plication. This research introduces an innovative deep learning-based
method for the seamless integration of multi-omics single-cell data, al-
lowing for accurate classification of omics expression levels. Omics data
are reconstructed using a denoising autoencoder with a learning rate
scheduler, cosine annealing. Reconstructed data are integrated with la-
bels for further downstream analysis. Our proposed method achieved
minimal classification loss, approximately 0.05% compared to other re-
cent methods. Furthermore, the proposed method achieved a consis-
tent accuracy greater than 90% in three multi-omics datasets, beating
four advanced state-of-the-art (SOTA) methods. The proposed model
‘IntegraDenoNet’ demonstrates improved classification accuracy and ad-
vances possibilities in precision medicine.

Contribution of the Paper: ‘IntegraDenoNet’ leverages deep learn-
ing to integrate multi-omics data for cell type classification, achieving
90% accuracy across three gold-standard datasets and outperforming
four state-of-the-art methods.
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1. Introduction

Multiomics approaches utilize high-throughput meth-
ods to generate omics data, followed by computational
analysis to extract biological insights. It is an integra-
tive approach that combines multiple omics data to create
a holistic view of biological interactions [1]. Each omics
layer correlates with others and has significance in the de-
cision of an examination, while having its limitations and
constraints [2]. Single-omics data research has proven fun-
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damentally incomprehensive, and it does not hold itself ac-
countable for the information correlation at each molecular
level. Thus, studying multiomics is far more comprehen-
sive and expressive. Single-cell multiomics tools improve
the understanding of cellular functions in both normal and
pathological states [3].

The key challenges in this field are the confidential
datasets and preparing unbiased models. Historically, dis-
ease prediction methods in studies initially depended on
statistical approaches. These methods calculate feature
values based on the detection of biological substances in the
human body. A comparison of these values was conducted
against predefined thresholds to analyze biomarkers from
specific omics and outline disease characteristics [4]. Still,
these statistical approaches for omics-disease association
identification have notable limitations. Therefore, employ-
ing a multi-omics approach is essential to fully strengthen
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the potential of high-dimensional data and gain in-depth
insights into biological systems. With advancements in ar-
tificial intelligence, especially deep learning, multi-omics
integration has gained prominence in disease classification
[5].

Many researchers have emerged in this domain. K.
Chaudhary, [6] utilized autoencoders to reconstruct fea-
tures from high-dimensional multiomics data, clustered sam-
ples using K-means, and trained an SVM for liver cancer
classification. Similarly, X. Li, [7] introduced the MoGCN
model by merging features using similarity network fusion
(SNF) to build a patient similarity network, and trained
a GCN for cancer subtype classification. These early inte-
gration approaches integrate multiomics data before input
into prediction models [8]. However, these methods often
struggle with robustness and generalizability due to the
high-dimensional and heterogeneous nature of multiomics
data that poses challenges for machine learning models [9].
Thus, newer implementation methods gained the attention
of the researchers for their flexibility across different omics
data. D. Sun [10] designed a deep convolutional neural
network to extract features from CNV and DNA expres-
sion data, which were subsequently combined for BRCA
subtype classification. The details related to the research
are discussed in Section 2.

Although late integration methods analyze individual
omics features before integration, many recent studies repli-
cate traditional models, often neglecting the possibility of
high-dimensional omics data. However, the continuous
evolution of deep learning offers opportunities for signif-
icant breakthroughs in multi-omics-based disease classifi-
cation.

This research project aims to integrate multiomics in
single-cell datasets to identify cell types with minimal losses
and higher accuracy, where the loss is achieved at 0.05%
and more than 90% prediction accuracy, respectively. Be-
fore going to the proposed method, this research experi-
ments with methylation, mRNA, and miRNA data with
some machine learning models. The omics datasets have
been trained with labels using the ensemble classification
technique with 41% accuracy; whereas normal classifica-
tion models give 21%. Individual data sets processing
yielded a consistent 64% loss. From the experiments of
classification with lower accuracy and higher losses, this
research aims to reduce the losses using the deep learn-
ing model. After going through the experimental machine
learning model, deep learning models have been chosen.
Considering the improvement of losses, this research pro-
posed a novel approach for multi-omics integration and
downstream analysis. Denoising autoencoders with cosine
annealing and optimizers have been used for reconstruct-
ing the individual omics after normalization with minimal
losses of 0.05%. Reconstructed omics data have been inte-
grated with corresponding labels and classified using differ-
ent classification models. In the scenario of classification,
a deep learning model neural network gives superior re-
sults for every multi-omics dataset, which is more than

90%. This approach demonstrates an effective pipeline
for multi-omics classification, indicating strong potential
in omics data analysis.

2. Related Research

Several researchers have described multiomics technol-
ogy. Multiomics data is exploited in a variety of ways, in-
cluding statistical approaches, machine learning, and deep
learning models. The associated multi-omics research study
is discussed below.

T. Wang [11], introduced MOGONET which constructs
graphs for each omics data using graph convolutional net-
works (GCNs) for omics-specified learning and integrates
outputs with the View Correlation Discovery Network (VCDN)
to explore cross-omics correlations. MOGONET’s effec-
tiveness was validated across various biomedical classifica-
tion tasks. H. Wang [12], highlighted a trusted method
HyperTMO integrate the dataset and find out the patient
classification. Single-omics data is used to calculate the co-
sine similarity for samples, and KNN is used to construct
the sample structure of the hypergraph. Hypergraph con-
volutional network (HGCN) finds out the high-order asso-
ciation and then combines the graph for multiomics repre-
sentation and predicts the class. T. Athaya [13], showed
the integration of extracellular miRNA with mRNA for
cancer studies using the CrosePred method. To enhance
the accuracy of the dataset, they have used an encoder
output and a random forest classifier to find out the to
classify samples as cancerous or healthy.

F. Chen [14], integrates a novel Graph Regularized Multi-
view Ensemble Clustering (GRMEC-SC) model for clus-
tering single-cell multi-omics data is a way to find out cell
type. Multi mono omics data is used based on clustering
and used non-negative weighted co-cluster affinity matrix
learned from multi-omics data to find out the cell type.
Novoloaca [15], studied emphasizes the need for integrated
tools for analysis in multi-omics for precise medicine, with
methodologies such as DIABLO and specific random forest
models demonstrating outstanding results in biomarkers
identification and illness analysis. Studies with simulated
data highlight the need to select suitable approaches for
multi-omics research. Lim [16], research demonstrates the
precise nature of single-cell omics in detecting cell variety
and unusual populations, as well as providing insights into
cellular relationships and regulatory networks. Integrating
multimodal omics improves applications in biology of de-
velopment, oncology, and precise medicine, and provides
extensive assistance in selecting appropriate approaches.

Valous [17], implemented a graph-based technique, par-
ticularly those utilizing Graph Neural Networks (GNNs),
which have become critical in multi-omics research, inte-
grating complicated biological data and improving our un-
derstanding of disease causes. This shift allows for the
identification of crucial biomarkers and pathways, promot-
ing individualized therapy. Baysoy [18], proposes that in
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the field of molecular biology research, Single-cell multi-
omic technologies have transformed the landscape of molec-
ular biology investigation by offering an in-depth compre-
hension of cellular diversity and functions. These advance-
ments have had a profound influence on diverse fields such
as cell lineage tracing, oncology, and the advancement of
therapeutic strategies in tumor immunology. Kesimoglu
[19], shows that, by combining multiomics data, the SUPREME
model improves malignancy subtyping by achieving more
precise classifications and capturing a variety of predictive
signals. It finds subtypes associated with notable differ-
ences in survival, frequently revealing characteristics not
found in conventional categories. SUPREME exhibits re-
silience and adaptability with accurate predictions span-
ning models and applications outside of cancer, holding
promise for advancing precision medicine by providing more
individualized insights into cancer treatment.

According to Flynn [20], advances in single-cell technol-
ogy, such as sequencing RNA and multimodal integration,
help us better comprehend the diversity of cells and func-
tion. This study investigates computational approaches for
linking biological levels and pathways by combining data
from various sources, including proteomic, spatial, epige-
nomic, and genomic information, thus paving the way for
future advances in complex biological systems. Rakshit
[21], described that, by combining transcriptomic, pro-
teomic, and genomic data, multi-omics technology helps to
understand how drugs work and how diseases work. Target
discovery is streamlined, disease diagnosis and treatment
development are transformed, and the integration of multi-
omics data is made easier by enhanced bioinformatics tools
and data accessibility. Creighton [22], analyzed compre-
hensive tumor profiling has been made possible by advance-
ments in mass spectrometry-based proteomics, with pro-
grams such as the Clinical proteome Tumor Analysis Con-
sortium and the Worldwide Cancer Proteogenome Consor-
tium gathering sizable proteome and multi-omics datasets
relevant to cancer. By enabling the thorough examination
of various cancer subtypes, these resources aid in the de-
velopment of targeted diagnoses and treatments.

Marshall [23], observes that currently, cancer therapy
focuses heavily on multi-omics technology for identifying
precisely between individual variants and tumor-specific
proteome patterns. Liquid biopsies have great opportuni-
ties as cancer biomarkers for a variety of research and ther-
apeutic uses, while recent developments in ctDNA analy-
sis and artificial intelligence-powered digital pathology are
improving cancer diagnosis and treatment. Hasin [24], ex-
plained that multi-omics techniques interpret the complex-
ities of disease by combining data from genomes, tran-
scriptomics, proteomics, and metabolomics. Coordinated
multi-omics studies from relevant tissues are necessary to
provide comprehensive mechanistic insights; important ge-
netic and metabolic trait assessments are provided by co-
horts such as MuTher and METSIM. Liu [25], shows re-
cent advances in single-cell multi-omics, particularly the
SiaNN model, enable successful integration of scRNA-seq,

scATAC-seq, and epitope data while addressing critical
issues such as batch effects. Benchmark testing reveals
SiaNN’s high precision and adaptability in a variety of sit-
uations, with applications confirmed using pcHi-C data,
making it an important tool for understanding compli-
cated biological networks, particularly those connected to
COVID-19.

In conclusion, multi-omics technologies, which combine
genomes, transcriptomics, and proteomics with powerful
machine learning and deep learning algorithms, have rev-
olutionized disease classification, biomarker identification,
and precision medicine.

3. Materials and Methods

The proposed model comprises three key components:
3.1 Data Availability and Review, 3.2 Reconstruction of
Omics Data, and 3.3 Multiomics Integration and Down-
stream Analysis. Initially, the data undergoes normaliza-
tion and standardization to ensure consistency and elimi-
nate scale-related biases. After normalization, the data is
further encoded using denoising autoencoders, which com-
press and highlight the most informative aspects of the
data. The encoded features from multiple omics datasets
are then concatenated into a unified multi-omics dataset,
integrating diverse biological information. Finally, a Neu-
ral Network (NN), CNN, and other classification models
are trained on this comprehensive multi-omics dataset to
effectively predict the class. Fig. 1 shows the proposed
method overview.

3.1. Data Availability and Review
To demonstrate the effectiveness of the proposed model,

we performed the BRCA PAM50 subtype classification
task on BRCA multi-omics data from TCGA, contain-
ing mRNA data and miRNA data for transcriptomics and
DNA methylation data for epigenomics. The BRCA clas-
sification task predicts five subtypes: Normal-like, Basal-
like, human epidermal growth factor receptor 2 (HER2)-
enriched, Luminal A, and Luminal B. The HNSC data from
TCGA and ROSMAP data were also used for this research.

Each omics is standardized and normalized. Standard-
ization adjusts features to have a mean of zero and a stan-
dard deviation of one, removing scale biases and ensur-
ing comparability and Normalization ensures consistency
across features from different omics datasets.

3.2. Reconstruction of Omics Data
To address these challenges, this article proposes the

use of denoising autoencoders to reconstruct each omics
dataset, enabling a more comprehensive representation of
the complex associations and heterogeneity inherent in
multi-omics data.

Each omics dataset undergoes standardization and nor-
malization to ensure uniformity and comparability across
features. Noise is injected into each omic dataset. Then, a
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Figure 1: IntegraDenoNet: Fig (a). shows the data preprocessing, using data normalization and adding Gaussian noise for further training.
A denoising autoencoder with cosine annealing, and to consider the large value difference of data, the mean squared logarithmic error loss
function has been used. Reconstructed omics data have been integrated with labels, and the reconstructed multi-omics data have been used
for classification. Fig. (b,c,d) shows the techniques, respectively.

denoising autoencoder is used to reconstruct the input data
while filtering out added noise. Fig. 2 shows the technique.

Input of Omics Data: Accepts the standardized in-
put x ∈ Rn, where n is the number of features. The Input
Layer specifies the input shape of the data.

Noise Addition: Gaussian Noise adds random noise
to the input to help the model learn to denoise the data.
Gaussian noise z ∼ N (0, σ2) is added to the input: x̃ ∼
x+ z where x̃ represents the noisy input.

Encoding of Data: Maps the noisy input x̃ to a
latent representation h:

h = f(Wex̃+ be) (1)

where We and be are the weights and biases, respectively,
and f(.) is the ReLU activation function. The encoder
progressively reduces the dimensionality, employing L1/L2
regularization, dropout, and batch normalization.

Decoding of Data: Reconstructs the original input x

from h:
x̂ = f(Wdh+ bd) (2)

where x̂ is the reconstructed output, Wd and bd are the
decoder’s weights and biases, and g(.) includes ReLU for
intermediate layers and linear activation for the final layer.

The mean squared logarithmic error (MSLE) has been
used with optimizers. In the denoising autoencoder deep
learning model associated with MSLE, calculate the loss,
and care about the relative scale between the noisy input
and the clean input. It considers the outliers and large
value differences in datasets.

MSLE(y, ŷ) = 1

n

n∑
i=1

(log(yi + 1)− log(ŷi + 1))
2 (3)

To avoid the large number of errors, MSLE helps to
adapt to the large range of omics datasets. yi denotes the
actual inputs, and ŷi is for predictive value addition; it uses
+1 to avoid the issue of logarithmic 0.
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Figure 2: Denoising autoencoder with optimizer. The noise injection into the original omics data and reconstruction process.

Adaptive moment (Adam) optimization algorithms
have been used to ensure more stable and faster conver-
gence. It helps for deep deep learning models like a de-
noising autoencoder for stabilizing the training for noisy
input. For complex and large data or parameters, it leads
to better performance and accelerates convergence to lower
losses in the case of reconstruction of data.

Combination of momentum and root mean square prop-
agation (RMSP) technique of Adam helps to learn the large
datasets effectively. Momentum algorithms accelerate the
gradient descent algorithm with an exponentially weighted
average; on the other hand, the RMSP uses an exponential
moving average to improve the algorithm.

Each epoch utilizes a learning rate scheduler, cosine
annealing. This technique begins with a relatively high
learning rate, which is gradually reduced to a minimum
value before being rapidly increased again. The cyclical
pattern helps the model explore different regions of the
optimization landscape, potentially avoiding local minima
and improving convergence.

ηt = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

(
Tcur

Tmax
π

))
(4)

Where ηmin and ηmax are ranges for the learning rate, and
Tcur account for how many epochs have been performed
since the last restart. Each omic dataset undergoes this
transformation, generating robust feature representations.

3.3. Multiomics Integration and Downstream Analysis
All the reconstructed data frames have been concate-

nated along the horizontal axis. Assuming a data frame of

omics datasets: Methylation = A, mRNA = B, miRNA =
C.

Concatenated DataFrame = [A | B | C]

where

A ∈ Rn×m1 , B ∈ Rn×m2 , C ∈ Rn×m3

The above scenario results in: Multiomics(M) = (n,m1 +
m2 + m3). For the downstream analysis label L is added
with multiomics data, [L | M ]. Machine learning and deep
learning models have been used for classification.

4. Model Implementation and Result Anal-
ysis

Python- 3.10.12 torch-2.2.1+cu121 CUDA:0 is utilized
on this platform; Intel(R) Core(TM) i5-8265U CPU @
1.60GHz (8 CPUs)), 1̃.8GHz, (Intel(R) UHD Graphics
620). Reconstructed multi-omics data with a neural net-
work classification model gives better performance. Imple-
mentation techniques are described below:

Step 1: The individual omics data have been recon-
structed using the denoising autoencoder with cosine an-
nealing. The optimizer is Adam, the loss function is a
mean squared logarithmic error, and the cosine annealing
has been called back from the denoising autoencoder train-
ing step. The cosine annealing max T will increase up to
2000, and the denoising autoencoder has been trained up
to 2000 epochs with a learning rate of 0.001. After that,
the reconstructed omics datasets have been concatenated
with labels using the concatenate function of Python.
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Step 2: Features are scaled to zero mean and unit
variance for better training performance. The Imbalance
dataset then goes through Synthetic Minority Oversam-
pling Technique (SMOTE) to balance the dataset by over-
sampling the minority class to match the majority class.
This prevents the model from being biased toward the ma-
jority class. Integer-encoded labels are converted into a
one-hot encoded format required for the neural network’s
softmax output layer.

Step 3: The neural network model consists of an input
layer accepting features of dimension, followed by two hid-
den layers with 512 and 512 neurons, ReLU activation, L2
regularization, and Dropout (10% and 20%, respectively),
and an output layer and softmax activation for multi-class
classification. It is compiled using the Adam optimizer and
categorical cross-entropy loss function, tracking accuracy.
Early stopping halts training if validation loss doesn’t im-
prove for 20 epochs and restores the best weights. The
model runs up to 200 epochs with a batch size of 256.

Step 4: To validate the proposed model, its perfor-
mance is evaluated using accuracy (ACC) and the F1 score,
two widely recognized metrics for assessing classification
tasks. In this setup, 80% of the data is allocated for train-
ing, while the remaining 20% is used for testing. This
approach provides a reliable assessment of the model’s gen-
eralization capability and minimizes the risk of overfitting.

4.1. Results Analysis
After the successful implementation of IntegraDenoNet,

3 different datasets have been trained with superior pre-
diction results. Reconstructed data have been integrated
with corresponding labels for downstream analysis. Re-
constructed multi-omics data have been trained with dif-
ferent classification models, where neural networks give the
best prediction accuracy. Random Forest, SVM, XGBoost,
CNN, and Neural Network models have been used for the
classification experiment. The accuracy varies in different
machines for the dimension of the neuron and the dropout
rate.

BRCA Multiomics Data: Table 1 shows the classifi-
cation report on BRCA data. A deep learning model neu-
ral network gives the best accuracy, which is 91%. Both
precision and recall for the neural network are 90%, and
the harmonic mean of precision and recall, the F1 score,
is also 90%, which indicates the balance of predicting true
positives and false positives.

ROSMAP Multiomics Data: Compared to other
classification models, a deep learning model neural network
gives the best accuracy, which is 91%. Both precision and
recall for the neural network are 90%, and the harmonic
mean of precision and recall, the F1 score, is also 90%,
which indicates the balance of predicting true positives and
false positives. Table 2 indicates the classification report
on ROSMAP data.

TCGA Multiomics Data: TCGA is larger compared
to others datasets. The max depth of the Random Forest

Table 1: Classification Report on BRCA Data

Classification Model Metrics
Acc F1 P R

Neural Network 91% ±1.50 90% 90% 90%
CNN 88% ±2.80 84% 85% 84%
XGBoost 88% ±1.23 89% 89% 89%
SVM 89% ±1.50 90% 90% 90%
Random Forest 88% ±0.20 89% 89% 88%

Table 2: Classification Report on ROSMAP Data

Classification Model Metrics
Acc F1 P R

Neural Network 91% ±1.00 90% 90% 90%
CNN 91% ±2.50 90% 89% 93%
XGBoost 87% ±0.50 84% 85% 84%
SVM 88% ±1.50 84% 86% 86%
Random Forest 85% ±3.50 83% 83% 83%

Table 3: Classification Report on TCGA (HNSC) Data

Classification Model Metrics
Acc F1 P R

Neural Network 90% ±1.80 89% 90% 90%
CNN 82% ±3.50 81% 82% 83%
XGBoost 85% ±0.50 84% 85% 84%
SVM 83% ±3.50 81% 82% 83%
Random Forest 80% ±0.50 79% 79% 79%

and XGBoost has been set to 100 to track predictions. A
deep learning model neural network gives the best accu-
racy, which is 90%. Both precision and recall for the neu-
ral network are 90%, and the harmonic mean of precision
and recall, the F1 score, is also 89%, which indicates the
balance of predicting true positives and false positives. Ta-
ble 3 indicates the classification report on ROSMAP data.

The receiver operating characteristic (ROC) describes
the performance of any predictions. The ROC curve of
the neural network classification on multi-omics data gives
significant results. The dashed diagonal line (ROC = 0.5)
of the AUC curve indicates the random classifier. The
ROC value of any class, 100%, means the class is perfectly
identified; more than 95% indicates the predicted class is
outstandingly classified. The prediction result of ROC is
close to 90%, indicating the class is excellently classified.
The ROC is important to measure the distinction of the
predicted class of the data. For the purpose of classifying
the multi-omics data, the neural network works incredibly
well; Figs. 3, 4, and 5 show the results.

Fig. 3 shows the ROC of class label prediction on the
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Figure 3: ROC curve for BRCA data

Figure 4: ROC curve for TCGA data

IntegraDenoNet model in BRCA data. On the multi-omics
BRCA data, classes 1 and 2 achieved 100% AUC, which
indicates that the classes are perfectly identified as true
positives randomly. On the other hand, classes 0, 3, and
4 achieved more than 95% AUC, which indicated that the
classes predict the true positive outstandingly.

TCGA multi-omics data predicts the true positive class
label excellently, where classes 0 and class 1 achieved 90%
AUC. Fig. 4 indicates the results.

Fig. 5 shows the ROC of ROSMAP multi-omics data
classification. For classes 0 and 1, 95% AUC was achieved
for true label prediction of ROSMAP multi-omics data,
which is outstanding.

This project experiments with a neural network model
on the datasets to predict performance. Methylation,

Figure 5: ROC curve for ROSMAP data

mRNA, and miRNA datasets have been trained using neu-
ral networks individually to see the results. After that, the
individual omics were concatenated and trained using a
neural network to check the classification accuracy. The
results of the experiments are poor compared to the final
proposed method, IntegraDenoNet. Fig. 6 bar graphs, in-
cluding the final model, show the progressive accuracy.

4.2. Comparison With State-of-the-art (SOTA) Methods
Compared to the similar work with the proposed In-

tegraDenoNet on the same datasets, it is shown in Ta-
ble 4 and Table 5. On the ROSMAP data, our proposed
model achieved 91% accuracy, which is better than other
methods. The harmonic mean of precision and recall F1
score is achieved at 90%, which is very effective for pre-
dicting the class. The AUC for both classes on ROSMAP
data is 95%, which denotes the outstanding performance
on selecting the true positive class from random data. On
the other hand, BRCA data also achieved 91% accuracy,
which is better compared to other methods. The macro
and weighted harmonic mean F1 scores are also 91% re-
spectively, which is also better compared to others.

Table 4: Comparative Analysis of Similar Work

Related Methods ROSMAP Data
Acc F1 AUC

hyperTMO [12] 87% ±0.033 87% 90%
MOGONET [11] 85% ±0.04 86% 85%
MoGCN [7] 80% ±0.55 77% 80%
XGBoost [26] 76% ±0.04 77% 83%
IntegraDenoNet 91% ±1.00 90% 95%
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Figure 6: Accuracy for three different datasets: BRCA, ROSMAP, TCGA, using our proposed method.

Table 5: Comparative Analysis of Similar Work

Related Methods BRCA Data

Acc
F1

macro
F1

weighted
hyperTMO [12] 87% ±0.023 84% 86%
MOGONET[11] 81% ±0.03 79% 81%
MoGCN [7] 80% ±0.03 76% 81%
XGBoost [26] 78% ±0.008 70% 76%
IntegraDenoNet 91% ±1.00 91% 91%

4.3. Scalability of The IntegraDenoNet
The proposed model, IntegraDenoNet, was developed

and evaluated on a local machine equipped with an In-
tel Core i5-8265U CPU and 8 GB of RAM. The model
was implemented using Python 3.10.11 and TensorFlow.
Each omics dataset was individually trained using a de-
noising autoencoder, requiring approximately 35 to 40 min-
utes per dataset. Following this, the concatenated recon-
structed data were further processed for classification, also
taking approximately 35 to 40 minutes. In total, the en-
tire pipeline takes around 140 to 160 minutes to execute
end-to-end on the specified hardware.

While the model performs well on moderate-sized
datasets, scaling to larger omics datasets (such as those
from TCGA) or applying the model in real-time settings

presents computational challenges. In such cases, the use
of higher-performance computing resources such as GPUs
or cloud-based platforms would be beneficial.

4.4. Limitations and Future Works
While IntegraDenoNet shows promising results for both

multi-class and binary classification tasks, several limita-
tions remain. First, although the model performs well on
moderately sized datasets, its scalability to larger omics
datasets (such as those from TCGA) remains a challenge
due to increased computational demands. Running the
model on such datasets would require higher-performance
hardware, such as GPUs or cloud-based computing envi-
ronments.

Future work could involve extending IntegraDenoNet
for biomarker discovery and applying unsupervised clas-
sification techniques to uncover hidden patterns in multi-
omics data. Additionally, developing a user-friendly soft-
ware tool with adjustable model parameters could enhance
the framework’s accessibility, reproducibility, and applica-
bility across various research settings.

4.5. Dataset and Code Availability
Data and code are available at the following link: Mul-

tiomics Integration.
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5. Conclusion
The study demonstrates the potential of multi-omics

integration for improving disease classification. Despite
challenges including dataset availability, computational
complexity, and framework scalability, the project pro-
vides a strong foundation for integrating single-cell omics
data using advanced deep learning techniques. Future
advancements include the addition of more omics data,
optimized feature selection, and improved computational
frameworks, which will further enhance the system’s ac-
curacy and usability. The work underscores the signifi-
cance of multi-omics in understanding complex biological
systems and tailoring personalized diagnostic and thera-
peutic strategies.

‘IntegraDenoNet’ performs well in predicting the clas-
sification of omics expression levels on three datasets:
BRCA, TCGA, and ROSMAP. The proposed method
achieved approximately 90% classification accuracy in
multi-omics data with higher precision and recall, outper-
forming four SOTA methods.

Proposed method utilizes a denoising autoencoder in
each omic dataset for reconstructing the respective omic
data while removing noise from such high-dimensional bi-
ological datasets. Furthermore, a neural network architec-
ture is employed on the concatenated multi-omics data for
efficient classification. Such an integrated architecture can
find the intricate pattern of multi-omics data while accu-
rately predicting cell type.
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