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Abstract

Deep Markov Model, which would be called as “Deep Kalman filters”, as
well as “Structured Inference Networks”, models structure behind time
series data by employing nonlinear mapping of neural network for system
model and observation model within state space modeling framework.
So obtained hidden state estimate becomes distributed representation
within neural network that leads to difficulty for interpretation of its
meanings. This work begins with applying simple mathematical models
to the framework of Deep Markov Model in order to address the above
issues. Its implementation employs PyTorch based framework “Pyro”
within programming language Python in demonstrative examples of nu-
merical experiment. The most simple state space model is so-called trend
model has been implement within the framework and parameters have
been estimated via variational Bayes in the numerical experiment.
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1. Introduction

State space modeling approaches [1] [2] to real world’s
phenomena by formulating them into dynamical systems,
which have time-varying feature essentially [3] [4] [5] [6].
The formulation specifies 1) hidden state, 2) time evolu-
tion of the hidden state, and 3) observation process to get
measurement derived from the hidden state. The hidden
state governs the dynamical system with its time evolu-
tion, then, measurement is by-product of the hidden state.
Because a measurement of single time step contains only
partial information of the hidden state, we need to utilize
time series models for estimating the hidden state.

The above three elements are represented in a state
space model typically as 1) state vector, 2) system model
/ equation, and 3) observation model / equation accord-
ing to traditional mathematical formulation. State estima-
tion techniques provide solution to the state space model
for given series of measurements. Among such techniques
for state estimation, Kalman filter [7] [8] is exact solution
for linear and Gaussian case, while particle filters [9] [10]
are approximate solutions for general case of non-linear
and/or non-Gaussian. Those techniques are derived under

assumption of given state space model.

To match the assumption of given state space model,
human design of the model in mathematical form is typical,
where small number of unknown parameters are involved
in the model. Then, the unknown parameters are tuned
with observed measurement data under maximum likeli-
hood criterion or Bayesian framework to get posterior of
the parameters, as investigated in, say, [11] [12] [13]. Thus,
human design is dominant in this approach of mathemati-
cal modeling.

Recent advances of deep neural network based approach
allows more flexible state space modeling as following in-
stance. Deep Markov Model, which would be called as
Deep Kalman filters [14], as well as Structured Inference
Networks [15], models structure behind time series data by
employing nonlinear mapping of neural network for system
model and observation model within state space modeling
framework. More researches, such as in [16] [17] [18] are
following along with this direction. Variational Bayes ap-
proach allows to tune the parameters of the neural net-
works for given measurement data without being suffered
from difficulty to estimate of hidden state and unknown
parameters simultaneously. Price to pay is to design ap-
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proximate posterior distribution.

So obtained hidden state estimate becomes distributed
representation within neural network that leads to diffi-
culty for interpretation of its meanings. In order to circum-
vent this difficulty, simple mathematical models have been
examined in the same framework of variational Bayes. So
obtained results of the experimental analysis provide some
insight how the framework performs. Note that some re-
searches try to circumvent this difficulty, e.g., by introduc-
ing bridge to physical model [16].

Our work begins with applying simple mathematical
models to the framework of Deep Markov Model in order
to address the above issues. Its implementation employs
PyTorch based framework “Pyro” [19] of programming lan-
guage Python in demonstrative examples of numerical ex-
periment.

2. Model

State space model, state estimation, and fixed parame-
ter estimation are summarized according to literature, say

[1] [2].

2.1. State Space Model

Hidden state at discrete time k and its series beginning
from k = 0 and up to k are respectively denoted by

Xi € Rn,

(1)

Observation at time k and its series beginning from k£ =1
and up to k are respectively denoted by

X0k = {X0,X1, ..., Xk} -

(2)

Initial distribution, i.e. probability distribution of the
hidden state at £ = 0, is denoted, with its parameter ¢, by

3)

Time evolution of the hidden state is governed by system
model having parameter y such that

Yi € R™ Yik = {YI7Y27--~vyk}~

PO(X0;0)~

(4)

where it implies that Markov property p(Xg|Xo:k—1,¥1:6—1) =
f(Xk|xk—1; 7) holds.

Observation, i.e., measurement, is governed by obser-
vation model having parameter 5 such that

f(xk|Xk—1§f)

(5)

where it implies that for K > k conditional independent
property p(y|Xo.x, Y1:k—1, Yet1:x) = h(Y|Xr—1; 1) holds .

All the parameters appearing in above three distribu-
tions are all together in

h(yi|xk—1;n)

(6)

E{O’fvh}'

2.2. Formal Solution to State Estimation

State estimation is to get posterior distribution of hid-
den state for given series of observation. There are three
major categories of the state estimation, filtering, predic-
tion, and smoothing, depending on the relation between
time step of hidden state xj, and observation series yi.x+1.
That is, L = 0 is filtering, L < 0 is prediction, and L > 0
is smoothing,

One-step-ahead prediction is obtained by convolution

P(Xply1e—1) = /f(xk|xk71)p(xk71|YI:k71)ka:71- (7)

where filtering at time k—1 is combined with system model.
Filtering is obtained by Bayes rule

hve i Vol [
p(xk|y1x) = (yr %% )p(%k[y1:5-1)
P(Ye|y1:k—1)

(8)

where one-step-ahead prediction is used as prior combined
with likelihood as observation model.

Denominator of eq.(8) is utilized to evaluate likelihood
as described later. It is obtained by integration of the
numerator

P(Y|Y1k-1) = /h(yk\xk)P(XHyLk—l)ka. 9)

Smoothing for fixed interval of measurements from k =

1 to k = K can be derived as

S xe)

dxj 41
P(Xk+1[y1:%)

10)
where the backward recursion consists of filtering p(xx|y1.x),
smoothing p(xx+1|y1.x ) and prediction p(xXg41]y1.x) at time
k + 1, combined with system model.

Joint posterior of the hidden state series can be ob-
tained recursively by

p(xkly1x) = P(xilyre) / (s lyrc)

h(Yk|Xk)f(Xk‘xszl) .

D(X0:k|Y1:k) = P(X0:k—1]Y1:k—1 11
(rosklynn) = oo | ) P(Yk[y1:k-1) 1
2.8. Fized Parameter Estimation

Fixed parameters, collectively represented as shown

in eq.(6), are necessary to be estimated beforehand con-
ducting state estimation task according to the formal so-
lutions in egs (7), (8), (10) and (11) . There are two major
approaches for the fixed parameter estimation, maximum
likelihood estimation and Bayesian approach.

Maximum likelihood estimation 1, is obtained by max-
imizing likelihood for fixed interval of measurements from
k=1tok=K

K

p(yik;) = H P(Yrlyie-13),
k=1

(12)

i.e., V1, = arg maxp(y1.x;) - Note that right-hand-side of

eq.(12) comes from eq.(9), and it can be evaluated through
state estimation task for a given instance of .

2
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Bayesian approach is based on joint posterior of the

hidden state series xo.x and the fixed parameters

p(XOZKa |y1:K) O(p(y1:K|X0:K7)p(XOIKa)' (13)

By marginalizing eq.(13) with respect to the hidden state

series

p(lyrx) = /p(XO:K, y1:5 ) dXo0. 5 (14)

and maximizing eq.(14) with respect to the fixed param-

eters , we can obtain MAP (Maximum A Posteriori) esti-
mation of the fixed parameters, i.e.,

MAP = arg maxp([yi.x)- (15)

2.4. Variational Bayes as Approximate State Estimation

Joint posterior distribution of the hidden state series,
appeared in eq.(11), can be re-written as

p(xo:x|yrx;) o< p(xo) X [Xp—1) R (yr|%k)

K
Xp[Xp—1) ¥ Hh()’k|xk)
= k=1
F(x0:x) x H(y1:Kx[X1:K)

P(y,x).

p(xo)

K
I
k=1

K
H(
k

In the above, we have denoted y = y1.x, X = X¢.x, and
P(x|y) = p(x0:x|y1:x3) , where

P(y,x) = P(x|y)P(y)

~ [ Plyxax

Also, we simply denote

and

Fo; (%) = F(xo0.x)
and

H, (y[x") = H(y1x|x1:K)

with xt = x1.x for later use.

Variational approximate posterior distribution Q(x|y)
has been introduced from now on. The degree of approx-
imation can be evaluated by KL(Kullback-Leibler) diver-
gence of P with respect to Q, where the KL, divergence is
defined by

KL (Q(x)[P(x))

J Q(x)log P(x) dx

Eo [log QExg

(16)

We can derive a relation between log of marginal like-
lihood in eq.(12), which is also called log of evidence, and
the KL divergence as
L(y; P, Q) + KL(Q|P)

logp(y;) = (17)

where £(+) is ELBO (Evidence Lower BOund) as defined

L(y;P,Q) = Eq |log gg;ly)}
H, yxH)Fy (%)
=Eg [10 : Qy) !

=Eq [logH, (y|xt)] — KL (Q(x|y)|| F,

S(x).
(18)

According to eq.(17) with fixed measurement y = y;.x,
maximizing ELBO of eq.(18) leads to minimizing KL diver-
gence of P with respect to Q since left-hand-side of eq.(17)
is constant for fixed measurement y.

Thus, parameter of variational approximate posterior
distribution Q(x|y) can be learned by maximizing the ELBO
in eq.(18) with gradient ascend for small ey > 0

0 = (-1 + VLY P, Q) (19)

3. Deep Markov Model

Deep Markov Model, which would be called as Deep
Kalman filters [14], Structured Inference Networks [15] as
well, utilizes neural networks for system model eq.(4) and
observation model eq.(5) in order describe nonlinear fea-
ture of the target system, such as real world’s phenomena.

Specifically, initial distribution of eq.(3) is in paramet-
ric form such as Gaussian distribution A (x¢; mg, Q) with
parameters o = {mg, Qo} where mg is mean vector and Qg
is covariance matrix. Note that dimension d of the state
x, for k > 0 is one of the design parameters to be given by
human decision.

System model of eq.(4) is Gaussian distribution

N (xp;m(xp—1; Wa ), Q(xp—1; Wp))

with neural networks m and Q having weight parameters
W, and Wg, respectively. Thus, the parameter of system
model is = {W,, Wz}

Observation model of eq.(5) is parametric distribution
P(yr; h(xx; W,)), such as Gaussian distribution for contin-
uous values, Bernoulli distribution for categorical values,
etc. Here, the parameter h(xz; W) of those distributions
is output of neural network having weight parameter W.,.
Thus, the parameter of observation model is j, = W,.

Whole the parameter, except the design parameter d,
of the state space model in Deep Markov Model form is

= {Wouwﬂaw’)’}' (20)
According to literature of Deep Markov Model [14] [15],
the parameter of eq.(20) can be optimized by maximizing
the ELBO in eq.(18) with gradient ascend for small eg > 0

) = (t-1) + €@VL(Y; P,_,), Q). (21)

Design of variational approximate posterior distribu-
tion Q(x|y) for Deep Markov Model is crucial to achieve
sufficient performance to the objective of analysis. Recur-
rent type of neural networks, such as LSTM(Long Short
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Term Memory) or GRU(Gated Recurrent Unit), bidirec-
tional in terms of time index have been examined in the
literature [14] [15]. Refer them for more details.

One important feature of Deep Markov Model is hidden
state representation consisting of d-dimensional Gaussian
distribution. This is a kind of distributed representation of
information coded by the neural networks in use. One sig-
nificant drawback is its difficulty to interpret the meaning,
despite of its flexible nonlinearity and learning ability.

4. Experiment with Simple Mathematical
Models

Variational Bayes approach to state space modeling and
state estimation explained above has been examined here
with simple mathematical model. The most simple state
space model is so-called trend model

zo ~ po(w;o)
T = Xg—1+V%
Yo = T+ wg )

v ~ q(v §f) (22)

wg ~ r(w;p)

which is a linear model having scalar state x; and ob-
servation yi. When initial distribution pgy, system noise
distribution ¢, and observation noise distribution r are all
Gaussian, state estimation can be conducted by Kalman
filter [7] [8]. Otherwise, it is necessary to use approximate
filter for non-Gaussian posterior state such as particle fil-
ters [9] [10].

4.1. Implementation in “Pyro”

To implement the variational Bayes inference in pro-
gramming language Python, we have employed PyTorch
based framework “Pyro” [19]. It provides simple imple-
mentation method with two functions named “model” and
“guide” corresponding to state space model and varia-
tional approximate distribution, respectively.

4.1.1. Implementation of function “model”

An implementation of the function “model” for the trend
model in eq.(22) with Gaussian distributions for pg, ¢, and
r has been shown in Fig. 1. Where, initial distribution of
Gaussian having parameter o = {po, 0o} with a constraint
op > 0 is subject to infer in variational Bayes framework
with initial values pg = 0.0 and o9 = 0.1 at the first five
lines of the function in the code of Fig. 1. Here, hidden
state at time k = 0 is described by pyro.sample at the
fifth line.

System noise and observation noise of the trend model
are both zero centered Gaussian with variance paramters
;= {72} and , = {02}, respectively. Initial values of
those parameters are 7 = 0.5 and o = 0.1 written at the
following four lines in the code of Fig. 1.

Following for loop in the function “model” evaluates
the first term Eg [log H, (y|x")] of ELBO in eq.(18), where

observed measurements y = y1.x are given as the argument
obs_y of the the function “model”. The evaluation with
Gaussian distribution has been conducted by pyro.sample
code having obs= argument in the loop.

Hidden state series x™ = z1.x are generated by fol-
lowing the system model, which is the second equation in

eq.(22), with Gaussian distribution evaluated by pyro.sample

code not having obs= argument in the loop.

All the hidden state in series x = xg.x, which includes
initial time step k = 0, have correspondence to function
“guide”. This correspondence is guaranteed by the first ar-
gument of pyro.sample function with the identical strings
having time index k governed by 'x_%d'%(i+1).

import pyro.distributions as dist

def model (obs_y) :

m_0_p = pyro.param('m_0_p’, torch.tensor(0.0) ) #m 0 p=20.0

s_0_p = pyro.param('s_0_p’, torch.tensor(0.1), # s 0p=0.1
constraint=constraints. positive) #s0p>0

x0_prior = dist.Normal (m_0_p, s_0_p)

x_prev = pyro.sample (" x_%d %0, x0_prior)

tau_p = pyro. param(’ tau_p’, torch. tensor (0.5), # tau_p = 0.5
constraint=constraints. positive) # taup >0

sig_p = pyro.param(' sig_p’, torch. tensor (0.1), # sigp =0.1
constraint=constraints. positive) #sigp>0

for i in range( len(obs_y) ):
x = pyro. sample(" x_%d % (i+1), dist.Normal (x_prev, tau_p))
pyro. sample (“obs_y_%d“%i, dist.Normal(x, sig_p),
obs=obs_y[i])
X_prev = X

Figure 1: Function model for trend model.

4.1.2. Choices on variational approximate distribution

As a variational approximate distribution Q(x|y), we have
several choices to design it. First choice is crude pro-
posal having time evolution of the hidden state by sys-
tem model’s equation in eq.(22) without referring observed
measurements y, thus, Q(x|y) = Q(x) and

K
Q(x) = qo(zo 50 H (Tk|Tr—15y) (23)

where initial distribution go(xg ;0) is Gaussian distribu-
tion N(py, o3 ) having parameters g = {py, oy} with con-
straint oy > 0, and system noise is Gaussian of zero cen-
tered having variance parameter 73 in f = {7y }.

Second choice is improved proposal from the first choice
having variational approximate distribution Q(x|y) to in-
corporate observation measurement y.

K
Q(xly) = qo(z0 ;0) H (ThlTr—1, YK 3 ) (24)

where initial distribution gg(xg ;o) is Gaussian with pa-
rameter ¢ = {uy,oq} with constraint oy > 0 as same
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as the case in eq.(23). Rest part of eq.(24) consists of
q(zk|Tr—1, Y& ; q), which is
zr = (1 — Q)zp—1 + ayk + vk, vp ~ N(0,77) (25)

where it has parameters , = {«a, 7,} consisting of variance
7'3 of Gaussian distribution and weight-coeflicient a.

Third choice is more improved proposal from the sec-
ond choice, which is exact estimation of the hidden state
according to Kalman filter (KF) algorithm.

4.1.3. Implementation of function “guide”

An implementation of the first choice of variational approx-
imate distribution Q for the trend model in eq.(22) into a
function “guide” has been shown in Fig.2. Where, pa-
rameters of the initial distribution, ; = {7¢}, and system
noise variance parameter, ; = {7y}, are subject to learn
under variational Bayes approach, as they are decleared
in pyro.param with given initial value at the beginning
three lines and at the two lines before the for loop in the
function.

The for loop in the function “guide” evaluates the sec-
ond term KL (Q(x]y)||F, ; (x)) of ELBO in eq.(18), where
observed measurements y = y1.x are given but not sub-
stantially used (just used for counting the length of series).

The correspondences of each hidden state variable is
guaranteed by the first argument of each pyro.sample
function call with the identical strings 'x_%d'%(i+1).

import torch.distributions.constraints as constraints

def guide (obs_y) :

m_0_q = pyro.param('m_0_q", torch.tensor (0.0) ) # m0.q=0.0
s_0_q = pyro.param('s_0_q',torch.tensor (0.1), # s 0q=0.1
constraint=constraints. positive) #s0ag>0

x0_posterior = dist. Normal ( m_0_q, s_0_q)
x_prev = pyro. sample (" x_%d %0, x0_posterior)

tau_qg = pyro. param(’ tau_q , torch. tensor (0.5),# tau q = 0.5
constraint=constraints.positive) # tau g > 0

for i in range( len(obs_y) ):
x = pyro.sample(’ x_%d %(i+1),dist. Normal (x_prev, tau_q))
X_prev = X

Figure 2: Function of crude guide for trend model.

Implementation of function “guide” for the second choice
has been shown in Fig.3.

Implementation of function “guide” for the third choice
has been shown in Fig.4.

4.1.4. Implementation of main procedure

Main procedure consists of a loop of learning and data
generating function, which are given in Fig.5 and Fig.6,
respectively. Where, in Fig.5, instance of SVI has been cre-
ated as a name svi by giving the two functions “model”
and “guide”, as well as optimizer such as Adam and loss
function as ELBO in eq.(eq.(18), before entering the learn-
ing loop of 2,000 iterations. As the conditions of synthetic

5

def guide(obs_y):

m_0_q = pyro. param('m_0_q', torch.tensor(0.0) ) # m 0 q=0.0

s_0_a = pyro. param(' s_0_q’, torch. tensor (0.1), # s 0.q = 0.1
constraint=constraints. positive) #s0qg>0

x0_posterior = dist.Normal ( m_0_g, s_0_q )

x_prev = pyro. sample (" x_%d %0, xO_posterior)

tau_q = pyro. param(' tau_q', torch. tensor (0.5),# tau g = 0.5
constraint=constraints. positive) # tau q > 0

= pyro. param('Kgain', torch. tensor (0.75), #Kgain = 0.75

constraint=constraints. interval (0.0,1.0) ) # 0 < Kgain < 1

for i in range( len(obs_y) ):

x_comb = (1- )kx_prev + *obs_y[i]
x = pyro. sample(’ x_%d %(i+1), dist. Normal (x_comb, tau_q))
X_prev = x

Figure 3: Function of improved guide for trend model.

def guide(obs_y):

m 0_qg = pyro.param('m_0_q,torch.tensor(0.0) ) # = 0.0

s_0_g = pyro.param(’s_0_q’ ,torch.tensor(0.1), i = 0.1
constraint=constraints.positive) >0

tau_g = pyro.param( tau_q’,torch.tensor(0.5) ¢ = 0.6
constraint=constraints.positive) £ > 0

sig_qg = pyro.param( 'sig_q ,torch.tensor(0.1),4# = 0.1
constraint=constraints.positive) § > 0

m prev = m_0_q

s_prev = s0.q

m_list = [ m_prev ]

s_list = [ s_prev ]
for i in rangs( len(obs_y) J:
V_p = s_prevxx2 + tau_qxx2
kgain = ¥_p / (V_p + sig_axl ]
m_curr = m_prev + Kgain * [ obs_y[i] - m_prev
V_F=(1-FKeain ) *xV_p
s_curr = torch.sart( V_f )
m_list.append( m_curr )
s_list.append( s_curr )
m_prev, s_prev = m_curr, s_curr

len(obs_y)
N

~
wonon

pyro.sample( xs_%d %(k),dist .Normal( m_prev, s_prev )

m_list[k]
_list[k]xx2

s curr = tgrch.sqrt( Vs )
% = pyro.sample( xs_%d %(k),dist.Normal( m_curr, s_curr )]
M_prev, S_prev = m_ourr, s_surr

Figure 4: Function of more improved guide for trend model.

data generation, length of series is K = 100, initial hidden
value is according to N (1.5,0.012)7 and variance parame-
ters are 72 = 0.12 and 02 = 0.012, as implemented in Fig.6.

4.2. Results of variational Bayes estimation of parameters

4.2.1. Result of first choice : crude proposal

Results of learning have been shown as follows. At first,
loss function is shown in Fig. 7. We can see that the value
of loss function fluctuates dramatically and generally tends
to decrease. It is almost stable after 1,500 iterations.

Estimated results of parameters are shown in Fig. 10,
in which both mathematical symbols and variable names
in Python are written for each panel. Where, true value is
shown in dashed thin line with blue color. Note on guide,
the true value is displayed as a reference only.
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from pyro.optim import SGD, Adam
from pyro. infer import SVI, Trace ELBO

adam params = {"1r”:0.01 }
optimizer = Adam(adam_params)
svi = SVI(model, guide, optimizer, loss=Trace ELBO())

history = { "loss': [1, 'm0.q: [, 's0q: [], "taug : [],
# 'Kgain': [1, # use this line if necessary
‘mO0p: (], "s0p: [l "taup: [, "sigp: [ 1}

NUM_STEPS = 2000
for step in range(1, NUM_STEPS + 1):
loss = svi.step (obs)
for key in history. keys() :
if key="loss’ :
history[’ loss’ ]. append (loss)
else:
history[key]. append (pyro. param(key) . item())
x0 = s_0_true * torch.randn(1) + m_0_true
obs = gen_data(N, x0, tau_true,sig_true)

Figure 5: Main loop of learning process.

import torch
pyro. set_rng_seed (0)

def gen_data(_N, x_prev, _tau, _sig):

_obs = torch. zeros (_N)

for i in range(N):
X = _x_prev + _tauxtorch. randn(1)
y = x + _sigktorch. randn(1)
_obs[i] =y
_X_prev = x

return _obs

tau_true
sig_true

X0 = s_0_true * torch. randn(1) + m_0_true
obs = gen_data(N, x0, tau_true, sig_true)

Figure 6: Synthetic data generation for trend model.

We can see that means of initial distribution in (a),(b)
and systen noise variances in (f),(g) are converging to the
true values for both model and guide, while variances of
initial ditribution in (c),(d) for both model and guide and
observation noise variance in (e) for model is not converg-
ing to the true values.

4.2.2. Result of second choice : improved proposal

Results of learning have been shown as follows. At first,
loss function is shown in Fig. 8. We can see that the value
of loss is smaller and more stable than the first case in
Fig.7. Also, it almost stable after 1,500 iterations.

Estimated results of parameters are shown in Fig. 11
in the same manner of Fig. 10. Where, new parameter,
weight-coefficient «, has been added in (f) without showing
its true value, which is unknown.

We can see that means of initial distribution in (a),(b)
for both model and guide and systen noise variances in (g)
for model are converging to the true values, while systen
noise variance in (h) for guide is underestimated. Obser-
vation noise variance in (e) for model is not reaching to
the true values within 2,000 iterations. Generally, more
stable results than the simple “guide” function have been
obtained, while variances of initial ditribution in (c),(d)
vary more.

4.2.8. Result of third choice : exact proposal with KF

Results are shown as follows. At first, loss function is
shown in Fig. 9. We can see that the value of loss is
much smaller and more stable than the previous two cases
in Fig.7 and Fig. 8. It has been stabilized quickly, before
500-th iteration.

Estimated results of parameters are shown in Fig. 12
in the same manner of Fig. 10 and Fig. 11. Where, new
parameter, observation noise variance for guide, has been
shown in (f) in place of « in Fig. 11.

We can see that mean of initial distribution in (a) for
model and systen noise variances in (g),(h) for both model
and guide are converging to the true values, while mean of
initial distribution in (a) for model and observation noise
variance in (e),(f) for both model and guide are not reach-
ing to the true values within 2,000 iterations.

Much more stable results than the previous two cases
in Fig. 10 and Fig. 11 have been obtained in general.
However, we recognize that variances of initial ditribution
in (c),(d) are converging to value for unknown reasons.

loss.
175000

150000
125000
100000
75000
50000
25000
N P

0 250 500 750 1000 1250 1500 1750 2000

Figure 7: Loss of crude proposal for trend model.

loss.

1400

1200
1000
800
600
400
200
o

0 250 500 750 1000 1250 1500 1750 2000

Figure 8: Loss of improved proposal for trend model.
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Figure 9: Loss of more improved proposal for trend model.
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5. Concluding Remarks

After reviewing the state space model and state estima-
tion formulation, methods for estimating fixed parameters
in state space models are formulated as maximum likeli-
hood estimation, Bayesian estimation, and variational in-
ference. Then, Deep Markov Model, as one of the latest
approaches for flexisible state space modeling, has been
summarized together with the state space model formula-
tion.

Implemenation of simple mathematical state space model
has been examined in Python programming language un-
der PyTorch based framework “Pyro”. Numerical experi-
ments for learning the model parameters based on varia-
tional inference have been conducted and loss function and
parameters’ estimation plots are shown as the experimen-
tal results.

Future works include experiments with more examples
of simple state space models, such as, non-Gaussian ex-
tension for system noise and/or observation noise in the
trend model, nonlinear model, target tracking model, de-
composition model, and so on [20]. More complicated mod-
els, such as visual/radar tracking models in a manner of
Track-Before-Detect, such as in [21] [22], are interesting to
be examined. Also, connection and comparison with latest
methods such as in [23] [24] [25] is important direction for
the future works.
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Figure 10: Estimation results of crude proposal for trend model.
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Figure 11: Estimation results of improved proposal for trend model.
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Figure 12: Estimation results of more improved proposal for trend model.



