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Abstract
Code comments are a vital software feature for program cognition & soft-
ware maintainability. For a long time, researchers have been trying to
find ways to ensure the consistency of code-comment. While doing that,
two of the raised problems have been dataset scarcity and language de-
pendency. To address both problems in this paper, we created a dataset
using C# projects; there are no annotated datasets yet on C#. 9,310
code-comment pairs of different C# projects were extracted from a data
pool. 4,922 code-comment pairs were annotated after removing NULL,
constructor, and variable. Both method-comment and class-comment
were considered in this study. We employed two evaluation metrics for
the dataset, one is Krippendorff’s Alpha which showed 95.67% similarity
among the rating of three annotators for all the pairs & other is Bilingual
Evaluation Understudy (BLEU) to validate our human-curated dataset.
An ensemble machine learning model with topic modeling is also pro-
posed, which obtained 96.2% using the performance metric AUC-ROC
after fitting the model to our proposed dataset.

Contribution of the Paper: A novel dataset, a set of rules for
human annotation, and machine learning models to automate the eval-
uation process.
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1. INTRODUCTION

To make software systems easy to modify or reuse, de-
velopers need to use comments in their code. Adding com-
ments helps to explain the design’s implementation details
and the intention behind it. Compared to source code,
comments are more straightforward, descriptive, and easy
to understand [1, 2]. As a result, comments are the pri-
mary documentation source for a software system. They
greatly assist in understanding the source code during the
development and maintenance phases, ultimately reducing
maintenance costs [1]. Comments provide developers with
a valuable resource to maintain and enhance software ap-
plications.
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For regular coding, debugging, and maintenance tasks,
developers spend extensive time navigating and exploring
existing code [3, 4]. If they could understand the code by
reading the description, largely known as the “comment”,
this extensive amount of time could be saved. One way to
eliminate all these blockages could be using the auto com-
ment generator. Generating auto comments also comes
with a problem. Since the software is an ever-evolving
process, the system is constantly evaluated. Due to mul-
tiple programmers working on the same codebase, track-
ing the changes and descriptions of written functions and
classes is often challenging. Developers usually comment
with a code fragment that provides insightful information
about a software system for managing software evolution
and maintenance. Nowadays, there are many automation
tools for comment generation, but comments are more leg-
ible when written by humans because they are written in
natural language [1, 2]. Comments are essential to enhance
the understandability of the source code. The reader gets
misled when there are inconsistent comments in the source
code. This can confuse and do more harm than good.
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Researchers have worked for many years to mitigate
the issue of inconsistent code and comments. In addition
to other solutions, determining whether code and comment
are consistent with one another at any point in the software
lifecycle was identified as a crucial solution. To accomplish
this, a standardized dataset is required. Although there is
an insufficiency of the existing dataset, several works of
literature have proposed various datasets. However, the
majority of datasets are produced by Java Programming
Language projects.

Alongside the Java programming language, C# is gain-
ing popularity due to its extensive libraries, third-party
software, large number of communities, etc. C# is the
tenth most popular programming language according to a
survey conducted in 20221. C# is tightly coupled with the
language.Net framework, one of Microsoft’s most successful
programming languages, is widely utilized by professional
software developers. According to our exhaustive review of
the existing literature, there is no dataset for the C# pro-
gramming language that considers the coherence of code
and its accompanying comment.

Java, an object-oriented programming language, sup-
ports more separation of concerns and good segregation of
concepts; as a result, it produces a good number of classes
[5]. Most of the previous work on code-comment consis-
tency is done in Java language which does not mention
working on class modules. In a systematic literature re-
view, it was mentioned that 87% of the studies done in
the last decade are from the Java system, and 50% of
the studies focus on specific comment types like method
or inline [6]. Multiple notable researchers worked on the
method and comment pair only [7, 8, 9]. C# is also an
object-oriented programming language that requires writ-
ing many classes. So, computing the coherence of both
class comment and method comment should be considered
because both class comment and method comment aid C#
program and project understanding.

To solve the aforementioned issues, in this paper, we
described the complete process of creating a dataset that
contains an annotation of 4922 code-comment pairs of C#
projects having both classes and methods. Our study is
focused on determining whether the lead comment(3.2) of
a method effectively describes the overall method or not.
In the same way, whether the lead comment of a class ef-
fectively describes the general intent of the class as well as
implementation details, for example, parameters type and
returned values, etc. In-line comments are not considered
in this work. Therefore, if a lead comment of a method or a
lead comment of a class describes the intent of the method
or class and its primary implementation detail, then that

1https://survey.stackoverflow.co/2022/#section-most-loved-
dreaded-and-wanted-programming-scripting-and-markup-languages

comment and the source code are coherent. To evaluate the
human annotation process, we used two evaluation metrics.
Krippendorff’s Alpha & BLEU. First, Krippendorff’s Al-
pha assesses the rating similarity among three annotators.
Second, BLEU checks how much our final combined an-
notation matches the lexical similarity between code and
comment. Our primary contribution to this paper is the
proposed set of rules to determine whether or not the lead
comment of the class is coherent with it, the annotated
benchmark dataset, which holds 4922 code-comment pairs
of C# projects.
To list down the contribution of this work is as follows:

� Took the class-comment pair into consideration and
proposed a set of rules to annotate them

� Showed the qualitative analysis of the dataset through
two evaluation metric

� Annotated class-comment and method-comment pair
for C# programming language

� Enhanced topic modeling based model to automati-
cally classify code-comment consistency

� Discussed possible threats to the work

The paper is structured as follows. In Section 2, we dis-
cussed related work, and background studies are presented
in Section 3. We discussed the methodology in section 4.
We reflected on the results and discussed them in section
5. The implication of this work to the practitioners is men-
tioned in section 6. In section 7, we validated the possible
threats that could be raised by readers. The conclusion
and future of the paper are in section 8.

2. RELATED WORKS

Commenting is the most crucial aspect of making source
code comprehensible. Because comments are more direct
and detailed, developers like them. More information re-
garding the implementation of the source code may be
found in the comments. Source code changes as program
development progresses. However, occasionally developers
fail to update comments to reflect progress. While most
developers recognize the importance of software documen-
tation, time constraints may lead to omitted comments
[2]. Consequently, there were contradictory comments. A
remark may contain information that is irrelevant or con-
flicting with the source code [10]. As a result, the costs
associated with reviewing, updating, and testing source
code will rise [11, 12]. All of these difficulties contribute to
comment gaps and inconsistencies in source code.

Recent research for better software maintenance has
yielded techniques for measuring the relationship between
code and comment [13] and highlighted the need to main-
tain consistency between the two. Several methods for

79



CNSER IJCVSP, 14(1),(2024)

identifying ancient document comments have been pub-
lished [14, 11, 13, 15]. Because documented comments
are well-structured for analysis, they were able to identify
out-of-date document comments with high precision and
recall [15]. For methods that only looked at block/line
comments, the detection was done at the function/method
level [11, 13]. For methods that looked at both, the detec-
tion was done at the topic level [14, 11].

A study created a technique for spotting obsolete com-
ments during the evolution of code using a machine learning-
based approach [16]. To find possible comment changes,
use the source code change and the relationship between
the code and the comment before and after the source code
change. They were able to detect changes in 64 different
properties of the software, as well as the state of com-
ments and how they related to the code before and af-
ter the changes, using machine learning techniques. Typ-
ically, the developer who writes the code decides whether
or not to include comments. How developers comment on
code determines both the quality of the comments and the
readability of the code. To better understand this term,
the practice of adding comments to code in various pro-
gramming languages is investigated [17]. The practice of
commenting on code has evolved as a result of the develop-
ment of natural programming languages and the evolution
of ecosystems.

Researchers are seeking a long-term solution for the
developers to comprehend this inconsistency. A method
is based on information retrieval for locating traceability
links between source code and free-text documents. In
two case studies, probabilistic and vector space informa-
tion retrieval strategies were used to track C++ source
code on manual pages and Java code on functional re-
quirements [18]. In another paper, a method is proposed
for detecting code comment inconsistencies in locking and
calling mechanisms. They were only interested in sugges-
tions regarding programmers’ assumptions and needs [11].
Another paper testing Javadoc’s comments was published
[12]. The authors analyzed method properties with null
values and corresponding exceptions. They utilized Natu-
ral Language Processing to identify inconsistencies involv-
ing @param tags in Javadoc comments and the null param-
eter exception statement in codes and comments. Their
efforts consist solely of commenting on null references and
throwing exceptions.

In another study, the results of a manual analysis of how
well the comments and implementations of 3,636 methods
from three Java open-source software systems match up
are shown [7]. The evaluations that resulted were compiled
into a dataset that was made publicly available thereafter.
This paper tries to find links between coherence and lexi-
cal information provided in source code and method lead
comments, which is another important contribution.

All the above literature gives us a perfect picture that
the problem of inconsistency between code and its com-
ments exists and there is a lot to work on. One of the
major drawbacks of all work is that they are done in Java
programming language. So, the first problem that should
be addressed is the scarcity of datasets in any different pro-
gramming language other than Java. In our work, we aim
to address that adequacy and work towards minimizing it.

3. Background Studies

Comments are the foremost source of code documenta-
tion. Due to this, their requirement is consistent with the
written code. Computing code comment consistency is es-
sential since a written method can be complex enough for
another developer to understand. Complexity may occur
for different reasons, for example, there can be dependen-
cies among the functions. The project can be one of the
open-source libraries. Our primary focus is to reduce the
language dependency of this research topic by providing
a labeled dataset for another programming language and
by proposing a language-independent model. With that
being the goal, a few terminologies and facts need to be
addressed first. Those facts & terminologies are discussed
in this section.

3.1. Importance of Topological Order of comment

Comments can be written on top of the code, inside
the code, and at the end of the code. Usually, comments
written between class and method explain or describe the
fragment of that code. Whereas, comments on top of the
code generally describe the whole class or method. So,
following the topological order of the comment is essential.

3.2. Lead Comment

Lead comment refers to the corresponding comment
which is written just above the code.

3.3. Coherent and Incoherent

When a code snippet’s meaning and respective com-
ment are aligned correctly, the code-comment pair is rec-
ognized as a Coherent pair. On the contrary, when the
meaning of a code snippet and respective comment is not
appropriately aligned is labeled as Incoherent.

3.4. Bilingual Evaluation Understudy (BLEU)

A value for comparing a candidate sentence of text to
one or more reference sentences of text. Complete match
outcomes in a score of 1, and complete inconsistency re-
sults in a score of 0.

This metric is widely used to evaluate machine trans-
lation results [19, 20].BLEU scores have been employed as
one of the evaluation metrics in recent source code summa-
rizing research [21, 22]. A function to compare a candidate
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Figure 1: Implementation of the method ‘Clear’ and its corresponding
lead comment

sentence to one or more reference sentences is offered by
NLTK.

A BLEU score compares a tokenized predicted sentence
to a tokenized reference sentence. The result is determined
by comparing the predicted sentence’s average precision to
the reference sentence. In our scenario the reference text
is code, and the candidate text is a comment. For a better
understanding, an example from our dataset is discussed
below.

In the code-comment pair in Figure 1, the reference
text was the void method code. For clear implementation
and candidate text, the comment ”Removes all resources
in the collection and disposes of every element” was used.
The BLEU score of 0.516593 indicates that the candidate
text (comment) matches the reference text (method) by
51.65%. A BLEU Score of 51-100% was considered as a
threshold value to determine if a pair is coherent, and the
pair in Figure 1 was found to be coherent.

4. Methodology

The complete workflow of the methodology is repre-
sented in Figure 2. At first, we extract the relevant code
artifacts to generate a dataset having all the properties
that satisfy our requirements (e.g., lead comment and class
comment) in the ‘Data Generation’[4.1] step. Then, we
evaluate the dataset in the ’Validation and Evaluation of
the Dataset’[4.2] step. Finally, we use this dataset in our
proposed machine-learning model to predict the coherence
of the code-comment pair in the ‘Model training and pre-
diction’ [4.3] step.

4.1. Dataset Generation

The dataset generation process consists of three parts:
Dataset crawling and extraction, Dataset Cleaning, and
Data Annotation. Each part is described in the next three
subsections.

4.1.1. Dataset Crawling and Extraction

To collect a set of naturally written comments by de-
velopers, we used the extracted code-comment pair by Gel-
man et al.[23]. This data pool of code-comment pairs holds
extracted pairs from GitHub projects for five different pro-
gramming languages. C# is only considered in the scope

of this work. To pull the code-comment pair, the author of
[23] chose the GitHub repository based on having a redis-
tributable license and at least 10 stars. Table 1 represents
the list of the C# projects from the data pool, selected for
this research. To verify the projects, first, the data pool
was explored, and later from that data pool, we found the
list of C# projects from the given filename. 10 projects
were chosen for annotating the code-comment pair from
the data pool, considering the highest number of stars.
This study was restricted to making allowances for com-
ments in an exact topological order, which is comments
being on top of class and method. The renowned term for
this type of comment is ‘lead comment’. The selected C#
projects were manually examined from the GitHub repos-
itory to ensure the comments’ topological order. All the
code-comment pair for these projects was then pulled from
the data pool.

Table 1: Selected projects & description

ID Project
Name

Project Description No. of
Stars

1 Managed-
CUDA

NVidia’s CUDA integration
in .net applications pro-
grammed using the pro-
gramming language C#

331

2 RoboSharp RoboSharp is a .NET wrap-
per for the awesome Robo-
copy windows application

174

3 hpack Header Compression for
HTTP/2 written in C#

11

4 intense Controls, templates, and
tools for building Universal
Windows Platform apps for
Windows 10

90

5 Potato Free gaming server remote
control (RCON) software

20

6 EmojiVS EmojiVS is a Visual Stu-
dio 2013 and 2015 extension
to display GitHub emojis in
the editor

84

7 xunit-
performance

Provides xUnit plugins for
creating performance tests

186

8 SimpleAuth Simple Auth embeds au-
thentication into the API
so one doesn’t need to deal
with it

158

9 BDInfo BDInfo collects video and
audio technical information
from unencrypted Blu-ray
movie discs

18

10 Gitter Developed as a standalone
repository management
tool for Windows with
powerful GUI

24
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Figure 2: Complete workflow of the proposed methodology.

Figure 3: The implementation of the class ‘add’ and its corresponding
lead comment

As aforementioned, two types of code-comment pairs
were considered for the dataset. The code can be either a
class or a method, and the comment is placed at the very
top of that class or method.

� Class Level Code-Comment Pair Dataset: Ob-
ject Oriented Programming (OOP) classes are mod-
eled after real-world entities. A user can designate a
class as a blueprint or prototype from which further
objects can be generated. Class declarations simply
require the term class and the class identifier (name).
Comments written immediately on top of class ex-
plaining the intent of the entire class are considered
a lead comment. The lead comment of a class and
the class itself are considered as a pair.

The Comments we considered here is the comment
which is just above the class. In Figure 3, we can see

Figure 4: Lead comment and the implementation of the method
‘Clear’

that there is a class declaration named ‘codeCom-
ment’ in line number 3, and just above that in line
number 2 the statement is the comment which is de-
scribing the class ‘codeComment’.

� Method Level Code-Comment Pair dataset: A
method is a block of code that is only executed when
called. A method can receive parameters or data.
Also known as functions, specific action-carrying meth-
ods are also known as functions. Using the method’s
name followed by parentheses to define a method.

The Comment we considered here is the comment
which is just on the top of the method. In Figure
4, we can see that there is a method named ‘Clear’,
and just above that, the statement is the comment
which is describing the method. From Figure 4, an
example of a method-comment pair can also be seen
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written within the ‘add’ class. Line 9 has the lead
comment of the method added and lines 10-15 have
the code of the method.

4.1.2. Dataset Cleaning

Data cleaning must be done in the beginning to elimi-
nate data noise and guarantee the correctness of the quality
evaluation model. In this study, the code and comments
contain a variety of identifiers and signs like punctuation
marks, semicolons, brackets, and meaningless words with
higher frequency. Hence, the data-cleaning procedure of
this paper contains purifying special text characters, seg-
mentation of words, etc. We removed stopwords for the En-
glish language, and words like ‘public’, ‘class’, and ‘static’
since these words add no extra value other than their mul-
tiple appearances in the dataset due to being a keyword
of C# programming language. Symbols like ‘/////’, ‘/n’,
‘/t’ were also removed from the dataset.

Table 2: Amount of distributed pairs

State of the
Process

Class-
Comment
Pair

Method-
Comment
Pair

Total

Before Data
Cleaning

1649 5432 9310 (In-
cluding
Null)

After Remov-
ing Null

1171 5910 7081

After Data
Cleaning

1093 3829 4922

Table 2 shows the number of pairs distributed as class-
comment pair and method-comment pair. As seen, Before
and After data cleaning the number of pairs was drastically
reduced. Naturally, the method-comment pair is greater
than the class-comment pair as multiple methods and its
lead comment can be written within one class. At first
from the selected projects, 9310 pairs of code and com-
ments were taken. Since it was extracted using Doxyzen,
which often fails to extract code or comment, as a result,
the space stays as null space. So we removed the Null pairs
from the dataset. Table 2 also shows how much data is re-
maining after removing the null pairs. Among 9310 pairs
23.51% pairs had missing values, hence, tagged as Null.

The primary content of this study is the method and
class-level code comment pairs. So, After discarding the
Null pairs, we discard the code comment pairs with any
inline comments with their corresponding commented code
or constructors and their short description of a class. This
marks the last step of data cleaning, after which the total
number of code-comment pairs becomes 4922 as seen in
Table 2.

4.1.3. Data Annotation

Annotation is a procedure for appending details to a
document at some level, a word or phrase, a section, or
the entire manuscript [24]. In this research work, the ini-
tial investigation is whether the code snippet is based on
classes or methods. If the code snippet is class-based, the
rules for the class will be applied. If the code snippet is
method-based, the rules of the method will be applied. If
the code comment pair passes the rules, it will be anno-
tated as Coherent; otherwise, it will be annotated as Inco-
herent.

To annotate the dataset, a human baseline approach
was employed. Using the code-comment pairs of the se-
lected projects, three annotators annotated those pairs with
the defined rules for methods and classes differently. Those
three annotators are Software Engineering graduates, who
work in the software industry and contributed to different
open-source projects. Detecting the relation between the
code and the comment is a subjective task. With a sub-
stantial amount of experience and educational background,
the annotators were entrusted with the annotation work.
Two experts from the software industry were also present
to check and ensure the quality of the set of rules and an-
notations.

Two sets of rules were utilized to annotate the data:
Rules for method-comment and Rules for class-comment
for annotating method-comment pairs already exist [7].
Table 3 contains the rules for annotating methods that
were previously established and proposed by Corazza et
al. aforementioned in the section 2. This set of rules is a
good approach to letting others know about the intent &
design implementation of the code, insights behind imple-
mentation decisions, etc. However, there are restrictions
in this rule set. The rules can describe the behavior of
a method and are generated exclusively for the Java pro-
gramming language. This previously well-established set
of rules has another setback, it is only given for method
level and ignores the existence of class-level code, despite
Java being an object-oriented programming language.

To annotate our data, we need two distinct rule sets, as
we are focusing on both the method and class levels. The
rules used to annotate classes are listed in Table 4. This
set of rules was reviewed by two experts. The annotation
procedure was identical to that for pairings of method code
and comments. The rules specify the presence of the rea-
son for the class declaration, implementation details of the
class, information regarding the inherited class, polymor-
phism, and information regarding the declared constructor
in the class.

Using the annotation process while keeping the rules
sets for both method level and class, we have annotated
the data. If the code-comment pair passes any 3 rules or
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Table 3: Established rules for annotating method code-comment
pair[7]

ID Rules for Methods

1 The comment of the method describes the in-
tent of the source code of this method.

2 The intent described in the lead comment of the
method corresponds to the actual implementa-
tion of this method.

3 The comment on the method describes all the
expected behaviours of the actual implementa-
tion of this method.

4 If the comment of a method provides implemen-
tation details (e.g., names and types of input
parameters according to JavaDoc), this infor-
mation is aligned with the implementation of
this method.

5 If the comment of the method provides details
about input parameters, their intended use is
properly described.

Figure 5: Implementation of the class ‘ColorTwist’ and its corre-
sponding lead comment

for both code-comment and method-comment pairs if it
passes the first 2 rules that pair is considered a coherent
pair, otherwise it is labeled as incoherent.

Figure 5 displays code extracted from our dataset. This
code snippet describes a class and its topological com-
ments, but we only considered the lead comment. To make
it an image, the code snippet was truncated from a long
class. Three annotators have named this code-comment
pair coherent. The lead comment here describes the class
declaration’s purpose and its basic implementation details,
which relate to rules 1, 3, and partially to rule 2.

From Figure 6, a snippet of our annotated coherent
code-comment pair. Code is the ‘Update’ method and lead
comment is the comment written on top of the code. This
pair was annotated as Coherent for satisfying rule no. 1,
2 but rule no. 4 & 5 is invalid for this method as this is a
void method.

Figure 7 shows an example of an incoherent lead com-
ment and void method. The reason behind labeling this

Table 4: Proposed rules for annotating class code-comment pair

ID Rules for Classes

1 Lead comment for the class expresses the pur-
pose of the declaration of that class.

2 The lead comment for the class gives the idea
of the constructor of that class along with the
parameters used in the constructor according
to the alignment to the implementation of the
class.

3 Comment of a class delivers the basic im-
plementation information—for example, names
and types of input parameters. The informa-
tion is in orientation with the implementation
of the class.

4 The lead comment contains information about
the inheritance properties of the class.

5 The lead comment contains information about
the polymorphic methods of the class.

Figure 6: Implementation of the method ‘Update’ and its correspond-
ing lead comment

pair as incoherent is this pair does not abide by any of the
rules.

Figure 8 is an example of an incoherent lead comment
and class. The reason behind labeling this pair as incoher-
ent is this pair also does not satisfy any of the proposed
rules to be a coherent code(class)-comment pair.

3 annotators, all of them having at least 1 year of ex-
perience in the software industry, separately annotated the
code-comment pairs checking both sets of rules. After an-
notating the dataset, Table 5 reveals that there are 1093
code-comment pairs for class and 3829 code-comment pairs
for a method out of a total of 4922 code-comment pairs, of
that 76.08% are coherent and 23.92% are Incoherent.

4.2. Validation and Evaluation of the Dataset

Since the three annotators annotated the dataset sep-
arately, it was essential to check how much the annota-
tion for each data point of all three different annotators
matched. To ensure that, we used Simpledorff - Krippen-
dorff’s Alpha [25]. Krippendorff’s Alpha is a well-known
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Figure 7: Implementation of the method ‘Exp’ and its corresponding
Lead Comment

Figure 8: Incoherent lead comment and the implementation of the
class ‘Index’

Table 5: Description of the coherent and incoherent code-comment
Pairs

Dataset Coherent Incoherent Total

Class-comment
pair dataset

1021
(93.41%)

72 (6.59%) 1093

Method-
comment pair
dataset

2719
(71.00%)

1110
(29.00%)

3829

Merged dataset 3745
(76.08%)

1177
(23.92%)

4922

inter-annotator reliability metric. It is devised to calculate
the like-mindedness among observers, coders, reviewers,
or raters, drawing distinctions among generally unformed
spectacles or allocating computable weights to them. Val-
ues of Krippendorff‘s Alpha(α) range from 0 to 1, where
0 is perfect disagreement, and 1 is excellent agreement.
Krippendorff suggests that it is conventional to require
α ≥ .800. Where indecisive findings are still acceptable,
α ≥ .667 is the lowest conceivable limit[26].

In addition to Krippendorff’s Alpha, the bilingual eval-
uation understudy (BLEU) score is used to evaluate each
code-comment pair and compare our annotated dataset.
Many recent studies have used the BLEU score as their
main evaluation metric. BLEU score estimation includes a
brief sentence for predictions. Thus, the model is rewarded
for predicting only n-grams in the reference sentence and
for making long predictions. BLEU-1 was employed, im-
plying the BLEU score estimation includes 1 gram and

every smaller n-gram. Agreeing with Hu et al.[21], this in-
work smoothing was also unused to settle the insufficiency
of higher-order n-gram overlapping.

4.3. Model Training and Prediction

To measure the coherence (integrity) of the code-comment
pair, we incorporated a variant of an ensemble machine-
learning model[8] with topic modeling. The topic model-
ing approach is employed because it analyzes text data to
select cluster words for a set of documents. Our modifi-
cations include adding natural language processing-based
preprocessing techniques like lemmatization, removal of
stop words, etc. Another modification our is employing
logistics regression to infuse the extracted features from
the multi-model random forest. As a cross-validator, a
stratified k-fold method was applied.

Along with the modification, the overall process of the
method can be summarised as follows:

� Preprocessing of code-comment pairs: The new-
lines, tabs and special characters, Extra whitespaces,
and stop words were removed at first. Words were
also split based on camel cases. Tokenized pairs were
turned into a bag of word tokens. Later on, lemma-
tization was applied.

� Feature vectors from code-comment: We used
Count Vectorizer to turn the tokenized code-comment
into an index vector. Then index vectors of code/comment
were separated from each other and passed into two
identical LDA models for training corpora separately.
For n number of topics, both LDA models provided
different probability distributions. Afterwards, the
achieved probability distribution for a code-comment
pair is concatenated to produce a feature vector.

� Multiple classifier: Extracted features of n num-
ber of topics were fit into a random forest(RF) clas-
sifier. The RF model delivers a consistency score or
probability score of being consistent for every pair
of code comments using the ‘proba‘ function. Since
the topic numbers for both corpora of comment code
might vary, it was necessary to obtain multiple num-
bers of topics to find the informative and compelling
features. Due to necessity, 20 different feature sets
were extracted, as seen in Fig 7, by changing the
number of topics in the LDA every time. These ex-
tracted features were fitted into 20 different random
forest classifiers.

� Infusing with logistic regression: Each random
forest model produces a consistency score for a code-
comment pair. These consistency scores originated
from 20 different random forests required to be fused.
Here, Logistic Regression combines the consistency
scores supplied by 20 other random forests and pre-
dicts the coherence of the code-comment pairs.
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Figure 9: Comparison of the result based on the Human annotator
and BLEU score

5. Results and Discussion

In this section, first, we evaluate the dataset based on
the aforementioned two well-known metrics and then, com-
pare the performance of our machine learning method with
other for classification.

5.1. Evaluation of the dataset

We evaluate the dataset based on Krippendorff’s Al-
pha. In the dataset, we find 95.76% similarity among
the rating of 3 annotators for all the code-comment pairs.
The percentage of similarity shows how much the rating
matched among the raters. So, the result of this metric
helped us to validate the human annotation. Upon in-
vestigation, it was found that the dissimilarity occurred
for one rater with different labeling for a few small-size
method-comment pairs than the other two raters.

Along with Krippendorff’s Alpha metrics, we also com-
pare the result with the BLEU score. From Figure 9, it is
clearly visible that the BLEU labeled 714 pairs as Incoher-
ent whereas, in our human-curated dataset, the annotators
annotated those as consistent ones. The idea of the BLEU
Score is, that it does not assume the definition of words,
while it is permissible for a human to employ a different
word with a similar meaning. The BLUE score also ignores
paraphrasing.

5.2. Comparison of the performance in classification

After using the modified model on our prepared dataset,
the performance score for multiple evaluation metrics (ac-
curacy, precision, recall, and AUC-ROC) for three datasets
can be observed from Table 6 and showed the strength of
our machine learning model. One of the primary reasons
behind the competitive result is that the code section has
a high amount of docstrings (well documented) written
within it. So when the model matches code and comments
based on appearance and occurrence, they can find similar
words present in the comment in the docstring.

Table 6: Performance of multiple evaluation metrics for 3 datasets

AccuracyPrecisionRecall AUC-
ROC

Dataset

Class-
Comment

0.973 0.990 0.980 0.919

Method-
Comment

0.974 0.975 0.989 0.963

Merged 0.973 0.981 0.983 0.962

In addition, we also compare the performance of our
model with the same variant[8] on the merged dataset.
Fitting the model on our annotated 4922 code-comment
pairs of the merged dataset, we got the value 96.2% which
is better than the previous model which gave 93.1% using
the performance metric AUC-ROC. The value difference
is shown in Table 7. Although these two models are simi-
lar, our preprocessing step makes the difference for better
prediction results.

Table 7: Comparison between ours and a state-of-the-art model on
our proposed dataset (merged)

AUC-
ROC

AccuracyPrecisionRecall

Model

Rabbi et
al.[8]

0.931 0.96 0.95 0.96

Our Pro-
posed

0.962 0.973 0.981 0.983

6. Implication to the practitioners

The proposed C# dataset broadens the enthusiastic
researchers of this field to work with a state-of-the-art
dataset. In addition, we are the first one to provide a
dataset having two types of code-comment pairs, class com-
ment code pair and lead comment-code pair. From an in-
dustry perspective, these two types of comments are gen-
erated, and this dataset helps them to train a model that
automatically detects the coherence of the code comment.
We proposed a variant of a machine learning model that
detects the coherence. Also, with the help of training this
dataset, it is possible to build a model that automatically
generates the comment or vice versa.

7. Threats to Validate

One of the external threats of this work can be using se-
lected systems and the programming language. To validate
this external threat, we have used checklist-based annota-
tion work, so that the dataset can be easily extendable for
other languages. The dataset proposal of our work can be
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seen as an elongation work of Anna Corazza et al. work,
they proposed a checklist-based public benchmark dataset
for the Java programming language. As far as the model
is concerned, it is an enhanced version of a previous study.

8. Conclusion & Future Work

The AI community is now moving towards data-centric
AI. Due to this, building a suitable dataset is becoming far
more acceptable than building complex models. We have
presented a dataset of an analysis on the coherence between
comment of methods and lead comments of class and their
corresponding implementations. Human annotation and
BLUE-1 label were different for 14.5% pairs among the
total dataset. 95.76% similarity is found among the anno-
tation of 3 annotators using the inter-annotator reliability
metric, Krippendorff’s Alpha. A description of the pro-
cess, problems, and mitigating procedures while creating
the dataset is also delivered. A step forward in this forth-
coming research direction could be making it language-
agnostic by extending the approach to other languages.
Models can be fed datasets of different programming lan-
guages as well. Furthermore, the topological order of the
comment should be analyzed more closely. Researchers
have concluded in a review paper that studies may work
more to generate comments in the correct place. [27] More
ways other than topic modeling can be explored. Even
though the BLEU score has been used before to evaluate
these kinds of datasets, none of the code or comments was
machine-generated. Exploring different metrics to evalu-
ate this kind of dataset should be a priority. Using logistic
regression in the ensemble model had the upper hand. We
plan to experiment more with model training in the future.
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