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Abstract
There has been growing evidence in recent years which supports that
different brain areas are involved in processing emotions. As a result,
research on emotion from the perspective of brain networks is becom-
ing popular. The connectivity strength of this network can be changed
with different mental states, which can be identified through different
frequency bands of the brain signal. In this study, brain functional and
effective connectivity networks have been constructed from DEAP emo-
tional EEG data to study how emotion influences patterns of this con-
nectivity. According to the investigation results, more direct correlations
are found under positive emotions than negative ones. The brain regions
operate more synchronously, and there is less directed flow of informa-
tion between brain regions during negative emotions. The correlation
between brain regions, whether direct or inverse, is higher in the lower
frequency band than in the higher frequency band. The flow of informa-
tion from one brain region to another brain region increases with higher
frequency, and there is more synchrony between brain regions in the
Gamma frequency band. The findings of this study have substantial im-
plications for the practical application of EEG-based emotion analysis,
as well as prospective avenues for future research in this field.
Contribution of the Paper: Different brain connectivity networks
have been investigated for positive and negative emotions under differ-
ent sub-frequency bands.
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1. Introduction

Neuroimaging techniques are valuable for studying how
emotion is processed by the human brain. Emotion re-
search has received increased attention from cognitive sci-
entists and neurobiologists in recent decades, owing to its
importance in decision-making and well-being, as well as
mood, personality, and psychotic diseases [1]. Electroen-
cephalography (EEG) is a neuroimaging technique that is
able to record the electrical impulses produced by neural
activity in the brain using its sensors (i.e., electrodes or
channels) affixed to the brain; it records the voltage alter-
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ations caused by ionic current flows within the brain’s neu-
rons [2]. Recently, EEG has become popular for studying
the brain’s responses to emotional stimuli for its superior
temporal resolution, noninvasiveness, portability, ease of
use, and reasonably affordable and fast [2], [3]. EEG is
a composite signal which is composed of sub-bands such
as Alpha (8–12 Hz), Beta (13–29 Hz), and Gamma (30–50
Hz) [4]. The constituent neuronal process activity may be
more precisely shown by these sub-bands [5].

Connectivity methods employed on the EEG signal pro-
vide valuable information regarding brain connectivity be-
hind emotion. Examples of such methods include Pearson
correlation coefficient (PCC) [6], cross-correlation (XCOR)
[7], mutual information (MI) [8], normalized MI (NMI) [9],
partial mutual information (PMI) [7], and transfer entropy
(TE) [4]. Linear functional connectivity such as PCC and
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XCOR can only detect linear dependencies. TE represents
effective nonlinear connectivity that measures the directed
flow of information between two brain regions, and MI is
nonlinear functional connectivity that measures shared in-
formation. MI and TE are Information Theoretic measures
that are based on Shannon entropy [10]. Both NMI and
PMI are two variants of MI. Such methods can be applied
to signals collected through EEG electrodes to extract the
connectivity features of the signals.

The extracted features can be mapped into a two di-
mensional matrix called a connectivity feature map (CFM).
Emotion recognition and investigating brain mechanisms
from CFM have become popular recently in the field of
emotion research [3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16,
17]. Wang et al. [9] used NMI as a connectivity method
to construct CFM from where it was identified that the
range of activated brain regions is broader in the high
Arousal low Valence state. Khosrowabadi et al. [15] used
magnitude mutual information and squared coherence es-
timate (MSCE) and MI features, from where it was dis-
covered that various emotional states are accompanied by
various types of functional brain connectivity. Liu et al.
[16] found the functional network induced by low Valence-
Arousal emotion demonstrated more active (higher coher-
ence) functional connectivity than the one induced by high
Valence-Arousal emotion. When using the phase slope in-
dex (PSI) approach to study brain connectivity, Costa et
al. [17] discovered a phenomenon whereby multi-channel
EEG signals for sad emotions are more synchronized than
those for happy emotions.

Several studies investigated responses of specific brain
regions on different mental states by analyzing the CFMs
with individual connectivity methods. Gao et al. [3] em-
ployed Granger causality (GC) and TE features for classi-
fying stress and calm state; from the GC connectivity ma-
trix, it was found that the parietal and frontal lobes show
stronger connectivity during the stress state; and from TE
connectivity matrix, discovered that under pressure, there
was a greater information exchange between the Fp1 and
C4 channels. Chen et al. [6] constructed CFM with PCC
and phase locking value (PLV); it was found from CFM
constructed with PCC that the brain’s emotional activity
is more perceptible in the occipital and parietal regions,
and the CFM with PLV revealed that the phase consis-
tency is relatively strong in the occipital, frontal and pari-
etal regions, while the phase consistency is poor in other
regions. Kong et al. [11] investigated brain connectivity
with the PSI method; and found that, in sad emotion, the
right prefrontal cortex (PFC) has stronger nodal connec-
tions than the left PFC, whereas, in happy emotion, the left
PFC’s nodal connection strength is stronger than the right
PFC’s. Wang et al. [12] investigated the PLV connectivity
matrix and drew a conclusion that emotions are related to
mainly the temporal lobe; and during positive and nega-
tive emotions, the left and right forebrain produces strong
EEG activity, respectively. The study shows that emotions
are greatly correlated with the forebrain. Zhu et al. [13]

explored phase synchronization of brain signals with phase
lag index (PLI) and found that, generally, the connectiv-
ity between the channels of the right frontal region was
stronger than those of the left frontal region.

The aim of this study is to analyze and understand
brain network connectivity stimulation for emotion as pos-
itive and negative through CFM from EEG, overcoming
the limitations of the existing studies. The existing stud-
ies considered a smaller number of method(s) to investi-
gate the brain mechanism behind emotion. There are only
a few studies that consider sub-frequency bands to analyze
brain responses during emotions. The major contributions
of this study are summarized below:

� Diverse connectivity methods are considered for CFM
construction and analysis. Three widely used con-
nectivity methods named PCC, PLV, and TE were
chosen.

� This study investigates connectivity represented in
three sub-frequency bands named Alpha, Beta, and
Gamma.

The rest of this study is structured as follows: The
methodology to investigate brain mechanisms from CFM
is described in Section 2. Section 3 presents the findings
from the CFM. At last, section 4 concludes the paper with
a few remarks.

2. Methodology

In this study, connectivity is measured using different
popular methods on the benchmark EEG dataset. The
following subsections describe the EEG dataset and the
connectivity methods to construct CFM.

2.1. Dataset Selection and Data Preprocessing

This study utilizes one of the biggest EEG datasets for
emotion detection, the Database for Emotion Analysis Us-
ing Physiological Signals (DEAP) [18]. In this dataset,
40 emotive music videos were utilized as the stimuli, and
the EEG and peripheral physiological signals of 32 indi-
viduals (i.e., subjects) are included. The database also
includes subjective scores that describe the levels of Va-
lence, Arousal, Liking, and Dominance of the emotional
states produced by watching the films. Preprocessed EEG
signals from the database were used in this work, where
the signal frequency range is 4.0 to 45.0 Hz. There were
a total of 40 channels, 32 of which were for EEG signals
and the rest for peripheral physiological inputs. The or-
dering of the electrodes in the preprocessed version of the
database is as follows: Fp1, AF3, F3, F7, FC5, FC1, C3,
T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz,
F4, F8, FC6, FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4,
O2.

In the DEAP dataset, the original signal is 63 seconds in
length. The first 3 seconds of data are the pre-trial baseline
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(a) CFM for PCC or PLV. (b) CFM for TE.

Figure 1: Connectivity feature map (CFM) creation with different connectivity methods.

which is removed, and the last 60 seconds of data are pro-
cessed for this study. The brain network’s connection mode
is difficult to maintain relatively steady between the start
and end of data collection (i.e., it does not satisfy the basic
assumption of static connection) [16]. So, the time series of
60 seconds is segmented before calculating the connectiv-
ity. Candra et al. demonstrated that a segmentation time
window of 3-12 seconds preserves the key information of
Valence [19]. EEG data are segmented for this study using
an 8-second sliding time window with a 4-second overlap.
Thus, there are 14 segments totaling 60 seconds. The total
number of segments for each participant is 14 Ö 40 (video)
Ö 32 (channel). EEGLAB [20] is used to filter the signal
to extract Alpha, Beta, and Gamma sub-bands. Among
the four quality levels available in the dataset, Valence is
chosen in this study as it is a well-studied scale to classify
emotions into positive and negative. In the dataset, the
ratings for Valence range from 1 (low) to 9 (high). Similar
to the study [21], Valence is considered as high (HV) for
values above 4.5 and low (LV) for less than or equal to 4.5.
HV indicates positive emotions, and LV indicates negative
emotions.

2.2. Connectivity Method and CFM Construction

Feature extraction is converting inputs to new dimen-
sions, which can be diverse combinations of inputs. This
work takes into account several connectivity measures (lin-
ear, non-linear, directed, etc.) for feature extraction as
well as CFM creation. In a single experiment, the level of
connectivity between two electrodes indicates the interac-
tion between two brain areas. Depending on emotional or
cognitive activities, this interaction could be a direct cor-
relation, an inverse correlation, or synchronization. Three
candidate popular connectivity methods were chosen from
linear functional, non-linear functional connectivity, and
non-linear effective connectivity categories. The selected
methods are PCC, PLV, and TE.

The linear correlation between two signals, X and Y ,

is measured by PCC and is calculated as-

PCCXY =
n
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(1)
here, n denotes sample size, and Xi or Yi is the individual
sample points indexed with i. PCC’s value varies from −1
to 1. (−1): complete linear inverse correlation, (0): no lin-
ear interdependence, (1): complete linear direct correlation
between the two signals.

PLV defines the phase synchronization between two sig-
nals, which is measured by the rules as follows-

PLV (X,Y ) =
1

T

∣∣∣∣∣
T∑

t=1

ej(ϕ
t
X−ϕt

Y )

∣∣∣∣∣ , (2)

Here, ϕt denotes the phase of the signal at time t,X, and Y
are two electrodes, and T is the length (time) of the signal.
PLV has a value between 0 and 1, denoting perfect inde-
pendence and perfect synchronization, respectively. The
directed information flow from a signal or time series Y to
another signal X is measured by TE.

TEY→X = H(Xt, Yt)−H(Xt+h, Xt, Yt)+H(Xt+h, Yt)−H(Xt),
(3)

Here, H represents Shannon entropy [10]. The fixed
bin histogram technique was utilized to calculate the prob-
ability which is needed to measure entropy. The number
of bins used in the calculation is 10. If future of X, i.e.,
X(t+h) is denoted by w then Transfer Entropy TE(Y→X)

can be computed as:

TE(w,X, Y ) = H(w,X, )+H(X,Y )−H(X)−H(w,X, Y )
(4)

The ranges of TE value are TE(Y→X) < ∞. If TE = 0,
then there is no directed flow of information i.e., no causal
relationship between the signals. TE > 0 means that there
is a causal relationship between them.
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When it comes to CFM, these variables are signals from
particular EEG channels. Connectivity features are ex-
tracted for each pair (X,Y ) of EEG electrodes. Thus, if
there are N electrodes, then the number of acquired fea-
tures is N(N − 1)/2 for undirected methods (i.e., PCC,
PLV) and N(N − 1) for directed connectivity (i.e., TE).
The connectivity features extracted from all electrode pairs
can be mapped into a matrix (i.e., CFM), as seen in Fig. 1
(for 5-channel EEG). The matrix element at (X,Y ) de-
scribes the connectivity strength between the signals col-
lected from the Xth and Y th electrodes. The CFM is
comparable to a graph’s adjacency matrix, where the EEG
electrodes and the features are regarded as nodes and edge
weights, respectively. As the data are segmented in the pre-
processing stage, a total of 17,920 CFMs are constructed
under each frequency band for each connectivity method
from all 32 participants, each with 40 trials.

3. Investigation of CFM for Emotion

CFM investigation for brain networks is the main con-
tribution of this study to observe the connectivity depic-
tion of emotion. The response of the brain of a person
to an emotion may be more or less different from another
person. Therefore, the constructed CFMs with each con-
nectivity method under each frequency band are averaged,
and analysis is performed on the CFM with average results
for general observation. The analysis is performed in the
following subsections in two different modes.

3.1. Effect of Sub-bands on Emotion Analysis

The CFMs created from the three frequency bands Al-
pha, Beta, and Gamma with the three connectivity meth-
ods PCC, PLV, and TE for positive and negative emotions
are displayed in Fig. 2. It can be observed for PCC in Fig.
2(a) that red and blue colors are lighter in the Gamma
band, and the colors are darker in the Alpha band. The
Beta band CFM colors remain in the middle of the two.
It means the correlation between brain regions, either it is
a direct correlation or inverse correlation, is higher in the
lower frequency band than in that of the higher frequency
band. As demonstrated in Fig. 2(b), the Gamma band has
a considerably larger PLV than the other bands, while the
Beta band has the lowest. This implies that the Gamma
frequency band had higher synchrony. In the case of TE
shown in Fig. 2(c), it can be observed that the flow of in-
formation from one brain region to another brain region in-
creases with higher frequency. Among the three frequency
bands, the positive and the negative CFMs are more easily
distinguishable in the Gamma frequency band. A number
of existing studies also identified that the Gamma band ex-
poses better observation than the Alpha and Beta bands
[14], [22]. So further discussions in the next sections are
presented with CFMs from the Gamma band only.

3.2. Connectivity Strength with Emotion Types

Connectivity methods provide valuable information ab-
out brain connectivity behind emotions. Figs. 3-5 show
how correlation, phase synchronization, and causal rela-
tionship between two brain regions change with emotional
changes. How the correlation between two brain regions
changes with the changes in emotion can be investigated
with CFM constructed from PCC. Fig. 3 shows the CFM
constructed using PCC in the Gamma frequency band for
positive and negative emotions. The blue regions (nega-
tive PCC) represent a linear inverse correlation between
two brain regions, and the red regions (positive PCC) rep-
resent a direct linear correlation. From Fig. 3, it can be ob-
served that the number of regions having a strongly inverse
correlation is higher in negative emotions than that of pos-
itive emotions. In Fig. 3, blue-colored regions are darker
in CFM of negative emotions than in CFM of positive emo-
tions. For better visualization, such few areas are marked
with blue rectangles. It means that brain regions are more
inversely correlated during negative emotions. The red re-
gions are darker in positive CFM than that in negative
CFM; this means during positive emotions more direct lin-
ear correlation exists between brain regions than that in
negative emotions. Such few areas are marked with red
rectangles. PCC can capture this information, and using
this information, brain activity and emotions can be cat-
egorized. This information is consistent with the existing
studies [6, 23]. The CFM constructed using PCC depicted
in the study [6, 23] clearly revealed that, in most cases,
inversely correlated regions are more inversely correlated
in negative emotions than positive emotions.

PLV describes the phase synchronization between two
brain regions. Fig. 4 shows the CFM constructed for pos-
itive and negative emotions using PLV in the Gamma fre-
quency band. When the PLV value is 0, the two signals
are perfectly independent, a PLV value greater than 0 in-
dicates synchronization between two signals, and a PLV
value equal to 1 indicates perfect synchronization. The
red pixels of CFM represent an area with a large phase-
locking value, while the blue pixels represent an area with
a small phase-locking value. Fig. 4 shows that the phase-
locking value in positive emotions is relatively lower than
the phase-locking value in negative emotions. Such few
areas are marked with red rectangles. Therefore, in the
negative state, the phase synchronization of distinct brain
areas is greater. The larger values indicate that the synergy
between different brain regions is enhanced during negative
emotions, which results in synchronous oscillations. This
information is consistent with the study [12], [24]. Ac-
cording to the study’s [12], the phase-locking value in the
pleasant condition is lower than in the sad state, indicating
that the pleasant mood is less active in the brain area. The
author of the study [24] found on the SEED dataset [25]
that sadness (which is a negative emotion) has the highest
synchronization. This could be due to the fact that sad-
ness triggered more memories and associations. It is thus
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(a) PCC (b) PLV (c) TE

Figure 2: Connectivity feature map (CFM) creation with different connectivity methods.

(a) Positive (b) Negative

Figure 3: Visualization of CFM Constructed using PCC in Gamma Band for Positive and Negative Emotions.

considered that the human brain pays greater attention to
details in negative emotions than in happy emotions.

The CFMs constructed for positive and negative emo-
tions using TE are shown in Fig. 5. The value of TE
increases with the increase in the directed flow of informa-
tion between two brain regions. From Fig. 5, it can be
found that the color of Fig. 5(b) is lighter than the color
of Fig. 5(a), which can be easily seen through the white
rectangular area, indicating the amount of directed flow of
information is higher in positive emotions than in negative
emotions. All the aforementioned findings of this study
are summarised in Table 1 showing outcome through the
connectivity strength function CS().

4. Conclusions

In this study, the brain area connectivity has been il-
lustrated for different emotions with three kinds of features
under three sub-frequency bands to investigate how corre-
lation, synchronization, and information transfer between
different brain regions change with the changes in emo-
tions. The connectivity feature maps (CFMs) have been
constructed with three diverse methods (i.e., PCC, PLV,
and TE), and rigorous analysis has been performed. It was
observed that during negative emotions, the inverse corre-
lation between different brain regions is higher than that
of positive emotions. The human brain pays greater atten-
tion to details when experiencing a negative emotion than
when experiencing a pleasant emotion, and the brain re-
gions operate more synchronously. The amount of directed
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(a) Positive (b) Negative

Figure 4: Visualization of CFM Constructed using PLV in Gamma Band for Positive and Negative Emotions.

(a) Positive (b) Negative

Figure 5: Visualization of CFM Constructed using TE in Gamma Band for Positive and Negative Emotions.

flow of information is lower in negative emotions than that
of positive emotions. The study also shows remarkable ob-
servations on sub-frequency bands’ effect and brain region-
based correlation on emotion. Among the three sub-bands,
the Gamma frequency bands have higher synchrony (i.e.,
PLV value) when participants watch emotional videos. In
contrast, the Beta band has the lowest PLV, i.e., the lowest
synchrony. A higher correlation (i.e., PCC value) between
brain regions exists in the lower frequency band than in
the higher frequency band. The flow of information (i.e.,
TE value) from one brain region to another brain region
increases with higher frequency
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