
International Journal of Computer Vision and Signal Processing, 14(1), 54-60(2024)

A Real-Time Anti-Aliasing Approach for 3D
Applications Using Deep Convolutional Neural
Network

F. M. Jamius Siam, Zahidul Islam Prince, Ahmed Nafisul Bari

Department of Computer Science and Engineering

Brac University, Dhaka, Bangladesh

Jia Uddin∗

AI and Big Data Department, Endicott College
Woosong University, Daejeon, South Korea

IJCVSP
International Journal of Computer 

Vision and Signal Processing

ISSN: 2186-1390

http://cennser.org/IJCVSP

Abstract
In real-time 3D applications, delivering smooth edges in the output im-
ages is essential, mainly due to limitations in resolution, memory, and
processing power. This paper proposes a deep convolutional neural
network-based model designed to address this aliasing issue. Aliasing
in an image is characterized by hard, jagged edges that are present es-
pecially when the edges do not line up with the pixel grid of the output
device. Our approach leverages a deep convolutional neural network
to learn these jagged patterns in images from a training dataset and
generates anti-aliased output images. The model’s architecture includes
several layers of convolutional neural networks, max-pooling layers, and
convolutional transpose layers. During the experimental analysis, we
used a dataset comprising demo 3D scenes created with both the Unity
and Unreal game engines. This dataset contains raw and super-sampled
images along with images processed with various other anti-aliasing tech-
niques. To assess performance, we used both SSIM and PSNR scores as
metrics to analyze the model’s accuracy. The experimental results show
that our proposed model not only competes with but often surpasses
other state-of-the-art methods like MSAA, FXAA, TAA, and SMAA,
by achieving higher SSIM and PSNR scores.
Contribution of the Paper: A deep learning-based anti-aliasing model
trained on a per-application basis with visual fidelity approaching or sur-
passing traditional methods.

Keywords: Anti-aliasing, FXAA, MSAA, DLAA, NFAA, jaggedness,
CNN, image-processing

© 2024, IJCVSP, CNSER. All Rights Reserved

Article History:

Received: 30 July 2023

Revised: 16 September 2023

Accepted: 20 February 2024

Published Online: 25 February 2024

1. INTRODUCTION

People always want to experience the best possible qual-
ity images. Hence image quality plays an important role
in 3D rendering industry. Researchers have developed var-
ious kinds of techniques to improve the image quality. In
this context, processing an existing image with algorithms

∗Corresponding author
Email addresses: jamiussiam@gmail.com (F. M. Jamius Siam),

zahidulisprince@gmail.com (Zahidul Islam Prince),
nafisulbari@gmail.com (Ahmed Nafisul Bari),
jia.uddin@wsu.ac.kr (Jia Uddin)

to tune the image data to create the final image is called a
post-processing technique. In 3D graphics, multiple post-
processing methodologies are applied to tune different at-
tributes, for example, contrast, color, exposure, depth, etc.
After rendering a 3D scene, jagged edges can be seen in ob-
jects of the final image, especially if the output resolution
is not sufficiently high; these jagged edges are also known
as the aliasing effect. This is an unpleasant experience for
the human eyes [1], as depicted in Fig. 1. The aliasing
occurs because the resolution of the rendered image is not
high enough to render cleaner and sharper-looking straight
lines and curves in the objects, and these lines/curves don’t



CNSER Int. J. Computer Vision Signal Process.

Figure 1: Render of a straight line with and without anti-aliasing

fit perfectly in a pixel grid. To the human eye, this aliasing
effect is distracting because in the real world, we do not see
such artifacts. As such, it is a hindrance to the experience
of the medium as a whole. However, with the help of anti-
aliasing methods, the effects of jaggedness can be reduced
to show a pleasing natural looking image. Anti-aliasing is
an image processing technique used in computer graphics
to improve the quality of images and address the issue of
aliasing. Anti-aliasing refers to the process of removing the
unwanted aliasing artifact commonly occurring in sharp
edges to achieve better quality images [2]. There are many
types of anti-aliasing methods, and most of them work in
a post-processing manner. However, this paper presents
a sequential CNN-based deep learning anti-aliasing model
for real-time 3D applications.

2. BACKGROUND STUDY

This section presents a brief introduction to the meth-
ods that are currently being used in the industry for anti-
aliasing with their advantages and disadvantages compared
to each other. These methods include both algorithmic and
deep learning-based methods.

2.1. Super Sampling Anti-Aliasing (SSAA)

One of the most effective ways of anti-aliasing is Super
sampling Anti-Aliasing (SSAA). In this technique, the im-
age is rendered at a higher resolution than the display of
the device in which the anti-aliased image will be shown,
and then it is downsampled it to the native resolution of the
display. Here, if a user’s display resolution is 1920Ö1080
pixels, the SSAA method takes the image and renders it
at a higher resolution, for example, 3840Ö2160, and then
downsamples it to meet the user’s display resolution which
results in a sharper and clearer image without the jagged-
ness that would occur had the image was rendered at the
native 1920x1080 resolution. The resulting image’s qual-
ity is much higher and eye-soothing than the other Anti-
Aliasing techniques. The major drawback of this technique
is that it uses huge processing power to work, which greatly
impacts the performance, making it infeasible in most real-
time rendering situations [3].

2.2. Multi Sample Anti-Aliasing (MSAA)

A spatial anti-aliasing technique called Multi Sample
Anti-Aliasing (MSAA) selectively super samples the edges
during the render cycle [4]. It takes multiple samples, e.g.,
2, 4, 8 for geometric shapes to process the higher quality
images. More sample counts result in a better quality, real-
istic and eye-soothing image [5]. MSAA is better at solving
aliasing issues at the edge of objects while preserving the
texture and sharpness of the scene. However, it is still ex-
pensive computationally [6], and the effectiveness of this
method is reduced when aliasing occurs within a textured
surface. As a result, aliasing and other artifacts can still
be seen inside rendered polygons where fragment shader
output contains high-frequency components due to the cal-
culation of multi-sampling interior polygon fragments per
pixel [7].

2.3. Fast Approximate Anti-Aliasing (FXAA)

The Fast-Approximate Anti-Aliasing (FXAA), also known
as Fast Sample Anti-Aliasing (FSAA) is run on a single-
sample color image as a single-pass filter. It is a postpro-
cessing technique; therefore, it saves a lot of computation
power sacrificing quality, which is its disadvantage [8]. Al-
though FXAA is effective at reducing aliasing in textured
surfaces, it often leads to blurriness of the textures, hence
sacrificing the sharpness and fine details of the overall im-
age [9].

2.4. Temporal Anti-Aliasing (TXAA/TAA)

Temporal Anti-Aliasing (TXAA/TAA) is an anti-aliasing
technique developed by Nvidia to provide film-like antialiased
quality images with marginally increased compute power
[10]. Temporal aliasing is the crawling and flickering seen
in motion when playing games. The presence of vehicle
wheels turning backward, the so-called wagon-wheel ef-
fect, is a common example of temporal aliasing. The ba-
sic principle of TXAA is to mix the current frame that
is being rendered with frames from the past. The TXAA
method uses high-quality MSAA multi-samples with frame
temporal filter post-processing to achieve high-quality anti-
aliasing. TXAA has two major limitations image quality-
wise, ghosting and blurring caused by moving objects [11].
Modern TXAA systems produce a violent blur due to the
way the colors of the current frame and background are
combined. Along with that, some ghosting artifacts can
be observed when objects move, especially under particular
light and background conditions that make the foreground
and background look alike. This is partially corrected with
motion blur. Nevertheless, some of it remains near objects
that move fast enough to create some ghosting but not
noticeable enough to be a detriment to the image quality.
Along with these, TXAA is more expensive than either
MSAA or FXAA.

55



CNSER IJCVSP, 14(1),(2024)

2.5. Subpixel Morphological Anti-Aliasing (SMAA)

Subpixel Morphological Anti-Aliasing (SMAA) works
by taking into account the various patterns of lines, and
curves and applying anti-aliasing in the same direction [1].
It also analyzes the subpixel layout for each pixel when
doing so, whereas other post processing based anti-aliasing
techniques often work on per pixel basis. As a result, it of-
ten preserves the finer details of the image. It is a little bit
more demanding on resources when compared with FXAA,
but generally provides a better result visually. However,
being a post processing method, it performs a lot faster
than sampling-based techniques like MSAA.

2.6. Deep Learning Super Sampling (DLSS)

Deep learning is a method of machine learning using a
virtual neural network. Neural networks require training
that gives the network representations of what it should be
like. To achieve this in games, Nvidia extracts a tremen-
dous number of aliased frames from the target game and
creates the anti-aliased frame using either super-sampling
or accumulation rendering. Then these paired frames are
fed to Nvidia’s supercomputers. DLSS reconstructs its
high-quality anti-aliased output by training on a large dataset
with the help of their supercomputers [12].

To take advantage of DLSS on a game, Nvidia has to
provide the trained model for the specific game to the con-
sumers via their Game Ready Driver updates. When an
RTX graphics card receives the update, it is able to run
DLSS for those specific supported games. The user only
has to enable DLSS settings to get state-of-the-art anti-
aliasing while maintaining good in-game performance. For
every game to have DLSS, Nvidia has to train a new model
because different games have different scenarios in 2D or
3D. Therefore, it is not possible for a model trained for a
specific game to perform anti-aliasing in a different game
properly, which is its noticeable disadvantage.

2.7. Normal Filter Anti-Aliasing (NFAA)

Normal Filter Anti-Aliasing (NFAA) is an anti-aliasing
method where the algorithm achieves anti-aliasing by fil-
tering out the normals, which represent the direction of
the surface of a polygon [13]. NFAA improves the visual
fidelity of the image by taking advantage of the normal dis-
continuities that occur at the edge of a polygon where alias-
ing is most prominent. It preserves the inner detail and
texture of objects as in those parts the normal direction
is continuous. Therefore, it is adept at handling complex
geometric patterns and shapes of 3D objects commonly
used in games. Its focus on the polygon’s edge means it
can perform anti-aliasing while being computationally ef-
ficient, relatively speaking.

Although this technique is not without its limitations,
while it can handle complex scenarios, residual artifacts
and blurring may often be noticeable when working with
particularly small/fine details, narrow structures, alpha
blending, and moving objects. In the case of the latter,

Figure 2: Architecture of the proposed model

Figure 3: Some random images from the dataset

it will often introduce temporal artifacts as described in
the Temporal Anti-Aliasing (TXAA) section. Also, NFAA
is generally computationally slower than both FXAA and
SMAA; the latter being an improvement upon FXAA [14].
The performance characteristics of this method are also
highly dependent on the capabilities of the hardware and
implementation detail.

3. PROPOSED MODEL

The overview of the proposed model is presented in
Fig. 2. The figure describes the different steps, such as
Keras Convolution 2D, Max Pooling 2D, and Convolu-
tional Transpose 2D, that are used in the proposed model.
To train the model, we have used TensorFlow, Keras, and a
sequential Convolutional Neural Network. To work, CNN
requires data in the form of numbers. Such numbers are
pixel values of the images. These values reflect a spectrum
of grayness from 0 (black) to 255 (white) for a grayscale
image. However, the 0 to 255 values are converted to 0 or
1 to feed the image data into the model. In the experimen-
tal setup, we have used 7 layers to train the model, which
currently works with grayscale images only.

By using convolutional layers, the model can learn about
features of the image e.g., corners, and edges. Then as we
go deeper, the inner convolutional layers can learn about
high frequency components that cause the aliasing effects
by storing the complex relations between pixels. After
that, the convolutional transpose layers can up-sample the
image to the intended resolution while making sure the
high-frequency jaggedness is not propagated back, effec-
tively achieving the goal of anti-aliasing the input image.

56



CNSER Int. J. Computer Vision Signal Process.

Table 1: Layer information of the proposed model

Layer Type Input Shape Output Shape Parameters
Convolution 2D 800x800x1 800x800x32 832
Convolution 2D 800x800x32 800x800x32 9248
Max Pooling 2D 800x800x32 400x400x32 -
Convolution 2D 400x400x32 400x400x64 2112
Max Pooling 2D 400x400x64 200x200x64 -
Convolution 2D 200x200x64 200x200x128 73856
Convolution Transpose 2D 200x200x128 400x400x64 73792
Convolution Transpose 2D 400x400x64 800x800x1 577

3.1. Model Architecture

In this section, we provide a detailed overview of the
proposed model. In Table 1, a detailed architectural overview
of the proposed model is presented. The table details all
the necessary parameters for each layer of the model, along
with their expected shapes and parameters.

3.2. Loss Function and Optimizer

The choice of the Loss function is vitally important in
the implementation of deep CNN to get the optimal result.
Several loss functions are available such as cross-entropy
loss, mean-squared error, Huber, etc. [15]. However, in the
implementation of our model, we utilize Eq. (1), where x
is the predicted image, and y is the target image (ground
truth).

Loss(x, y) = 1− SSIM(x, y) (1)

The lesser the loss function is, the more accurately the
anti-aliasing is applied. For SSIM, we calculate the SSIM
score of the predicted image with respect to the target im-
age (ground truth). We will discuss about this in more
detail in the Experimental Setup and Result Analysis sec-
tion. To update the model with the loss function feedback
and train the neural network, the Adam (Adaptive Mo-
ment Estimation) optimizer is used in the implementation
[15]. Adam is an adaptive learning rate optimization algo-
rithm and it often converges faster than stochastic gradi-
ent descent with a fixed learning rate and uses an adaptive
learning rate approach to automatically adjust the learning
rate for each parameter based on the historical gradients
[16].

4. EXPERIMENTAL SETUP AND
RESULT ANALYSIS

4.1. The Dataset

To evaluate the performance of the proposed model,
two custom datasets has been generated using both the
Unity [17, 18, 19] and Unreal game engine with different
objects such as spheres, cylinders, and squares, etc. Af-
ter that, an animation was created to move the camera
around the scene. Then, to create both the input and

output images, frame-by-frame images of that animation
from various different camera perspectives were taken while
making sure that each frame differs from each other by a
substantial number of pixels because the neural network
needs to understand each frame separately. If the differ-
ence between the two frames is two or three pixels, then
the neural network will not be able to understand whether
to anti-alias the images or transform them. The output
frames were stored in a lossless format because in a lossy
image, vital data about the frame is often lost, and as such,
the neural network will not be able to work properly. Ad-
ditionally, we can expect to receive lossless frames when
working inside the game engine itself as a post-processing
effect.

Fig. 3 shows a snapshot of sample images of the dataset.
The output frames are in two different resolutions- 800Ö800
pixels and 3000Ö3000 pixels. The images of resolution
800Ö800 pixels are raw aliased input images. To give
the neural network a target output to achieve from the
raw aliased input images, the high-resolution images of
3000Ö3000 pixels are converted to 800Ö800 pixels using
the Bicubic Sharper algorithm [20, 21]. These converted
images are considered the ground truth.

Figure 4: Average SSIM scores from the test dataset after applying
different anti-aliasing methods

57



CNSER IJCVSP, 14(1),(2024)

Table 2: Layer information of the proposed model

Game Engine Training Set Testing Set
Unity 5000 1000
Unreal 3700 1000

Figure 5: Average PSNR scores from the test dataset after applying
different anti-aliasing methods

RGB images exhibit three different values for each pixel,
making the required matrix calculations expensive. There-
fore, in this initial iteration of our model, the input im-
ages to the neural network are converted from RGB to
Grayscale color space using the Luminosity method [22].
This method forms a weighted average to account for hu-
man perception because we are more sensitive to green
than other colors, so green is weighted more heavily. The
formula for Luminosity is given in Eq. (2) [23].

Lum(R,G,B) = 0.299R+ 0.587G+ 0.114B (2)

Normalization is also done before feeding the input im-
ages to the neural network. For the grayscale images, the
brightness of the pixel value is a single number. The im-
ages are stored in byte array format; as a result, a single
pixel is stored as an 8-bit integer which gives us a range
of possible values from 0 to 255 [24]. However, machine
learning works with only two values which are 0 and 1. It
is because machine learning only gives a probability, the
values of which range from 0 to 1. For this reason, we nor-
malized the images to values of 0 to 1. In addition to these,
the images were shuffled and flipped both horizontally and
vertically at random. In Table 2, the size of the datasets
used to train and test the model is detailed.

4.2. Quality Comparison

Different HVS-based (Human Visual System) methods
are often used to evaluate image quality [25]. To simulate
the HVS characteristics, Wang et al. proposed a model

Unity Unreal

80

85

90

95

100

105

Raw Image FXAA TAA Our Model SMAA MSAA TSR

Unity Unreal

80

85

90

95

100

105

Raw Image FXAA TAA Our Model SMAA MSAA TSR

Figure 6: Average PSNR score distribution from the test dataset
after applying different anti-aliasing methods

called Structural Similarity Index Measure (SSIM) [26].
SSIM has three parts: Luminance comparison l(x, y), Con-
trast comparison c(x, y), and Structure comparison s(x, y).
SSIM is defined as in Eq. (3) [16].

SSIM(x, y) = [l(x, y)]α. [c(x, y)]β . [s(x, y)]γ (3)

The overall image quality is evaluated as mean SSIM (MSSIM),
which is defined as Eq. (4), where M is the matrix con-
taining the image information.

MSSIM(x, y) =
1

M

M∑
j=1

SSIM(xj , yj) (4)

From the definition of SSIM, the higher the value of SSIM(x, y)
is, the more similar the images x and y themselves are
[26, 27].

Along with SSIM, Peak Signal-to-Noise Ratio (PSNR)
is commonly used to assess the quality of image represen-
tation by measuring the ratio between the highest possible
signal power and the power of distorting noise affecting the
image. PSNR is typically expressed in logarithmic deci-
bels, providing a value that ranges from the largest to the
smallest possible values, with adjustments based on their
consistency Eq. (6) [28, 29].

To calculate PSNR (Peak Signal-to-Noise Ratio), we
employ one of the most widely used image quality mea-
surement metrics, Mean Square Error (MSE) [28]. A lower
MSE value indicates better image quality, making it a full
reference metric that accounts for both variance and bias.

58



CNSER Int. J. Computer Vision Signal Process.

Figure 7: Comparison of different anti-aliasing methods on an unseen image depicting a monkey’s face (zoomed in)

Figure 8: Average FPS of the proposed model running on different
GPUs in the Unity game engine

In the case of an unbiased error, MSE represents the vari-
ance of the estimator. Given a reference image f and a test
image g, both of size MN (M rows and N columns), the
MSE between the two images can be expressed as Eq. (5).

MSE(f, g) =
1

MN

M∑
i=1

N∑
j=1

(fij − gij)
2 (5)

PSNR(f, g) = 10 log10

(
2552

MSE(f, g)

)
(6)

In Eq. (5), the MSE value tends to zero, and the PSNR
value from Eq. (6) approaches infinity when the two images
are similar, which is in line with the idea behind PSNR
that a higher value provides a higher image quality. On
the contrary, a small value of the PSNR implies a high
numerical difference between images [30].

4.3. Image Quality Analysis

The following sub-section briefly discusses the result
analysis of the proposed model. In this experimental anal-
ysis, we have used both SSIM and PSNR as the perfor-
mance metrics for evaluating the image quality. Generally,
SSIM output ranges between 0 to 1, and PSNR output
value ranges from 0 to infinity. The higher the values of
SSIM and PSNR, the better the anti-aliasing is applied. In
the experiment, we calculated the SSIM and PSNR values
using the Tensorflow library’s image package.

In Fig. 4, the average SSIM scores from the dataset
of 1000 test images are shown. MSSA is not applicable in
Unreal Engine’s Deferred Rendering Pipeline, and SMAA

is not available by default. On the flip side, TSR (Temporal
Super Resolution) anti-aliasing is an Unreal Engine specific
method, hence not available in Unity.

In this test image dataset using SSIM metric, our model
outperforms all the other anti-aliasing methods. This trend
is also visible in the average PSNR scores as it can be seen
in Fig. 5. In terms of both SSIM, and PSNR, our model
outperforms other anti-aliasing methods. Along with that,
from Fig. 6, we can see the distribution of PSNR scores
across various anti-aliasing methods where it is evident
that the scores of the metric is very stable in our proposed
model indicating a better overall image quality across a
number of frames. Furthermore, this trend is similar in
SSIM as well.

In both SSIM, and PSNR metric, the scores across
all the anti-aliasing methods are quite high. However, it
should be noted that for the most part, a scene is essen-
tially the same in both the resulting image and the ground
truth image; it is only in the sharp edges that the differ-
ence starts to occur. Therefore, these small differences are
significant for our purpose.

To evaluate the anti-aliased image quality of the pro-
posed model in different scenarios apart from the testing
dataset, we also experimented with a 3D model with lots of
small and large details. In the Unity game engine, we cre-
ated a scene with blender’s monkey’s head and evaluated
our model with other anti-aliasing methods as depicted in
Fig. 7. In this scenario, the proposed model outperforms
all the other algorithms except MSAA as can be seen from
the PSNR scores in the figure. However, it should be noted
that our model was not trained on this level of geometri-
cally complex scenarios.

With all of these experimental scenarios, it should be
noted that all of the images used here are completely unique,
and no single image was repeated across the described sce-
narios above.

4.4. Realtime Processing Analysis

Our proposed model can be integrated into virtually
any game engine provided it supports running Open Neu-
ral Network Exchange (ONNX) models. In Unity, this is
supported via the Barracuda neural network interfacing li-
brary developed by Unity Technologies [31]. Firstly, we
converted our model to an onnx file using the tf2onnx li-
brary in Python. Next, as our model expects images in
grayscale, we used a compute shader in Unity to convert
the currently rendered frame into grayscale using Eq. (2).

59



CNSER IJCVSP, 14(1),(2024)

Then the frame is fed to the model and the output is
displayed on screen. By leveraging the GPU for all this
processing, we can run our model in real-time scenarios.
In Fig. 8, we can see the almost all last-gen GPUs from
Nvidia 3060 and up can run our model in realtime at above
30 frames per second (FPS). Even flagship GPUs from two
or three generations prior can hit 30 FPS, albeit in simpler
scenes. Following this trend, all of the current generation
GPUs should be able to run the proposed model at 30
FPS at the minimum, enabling realtime application of our
proposed model.

5. CONCLUSION AND FUTURE WORK

In this study, we have presented a deep convolutional
neural network based anti-aliasing method that consistently
outperforms other industry standard anti-aliasing methods
in scenarios it was trained for. In addition to that, the vari-
ance in image quality is also lower than other methods. In
unseen scenarios, the model generally performs well, but is
surpassed by other methods, indicating a per application
basis training like DLSS [12] is the best way to implement
it. Furthermore, the frame per second performance metric
is well above the acceptable minimum for realtime appli-
cation on a modern GPU. However, there are some con-
straints. The model is currently limited to grayscale image
only, making it unsuitable for many real-world scenarios.
Additionally, the computation cost for realtime processing
is on the higher side. Despite these limitations, the exper-
imental results are promising and further work to support
color images, and model optimization for performance are
the logical next steps.

References

[1] Anti-aliasing: What is it and why do we need it?, Available
from: https://vr.arvilab.com/blog/anti-aliasing.

[2] K. Beets, D. Barron, Super-sampling anti-aliasing analyzed,
Available from: http://www.x86-secret.com/articles/div

ers/v5-6000/datasheets/FSAA.pdf.
[3] J. Jimenez, J. I. Echevarria, T. Sousa, D. Gutierrez, SMAA: En-

hanced subpixel morphological antialiasing, Computer Graphics
Forum 31 (2012) 355–364.

[4] Multisampling anti-aliasing in hdrp, Available from: https:

//docs.unity3d.com/Packages/com.unity.render-pipelines

.high-definition@6.7/manual/MSAA.html.
[5] J. Jimenez, et al., Filtering approaches for real-time anti-

aliasing, in: SIGGRAPH’11, 2011, pp. 1–329.
[6] A quick overview of msaa, Available from: https://mynameismj

p.wordpress.com/2012/10/24/msaa-overview/ (August 2017).
[7] Multisample anti-aliasing, Available from: https://en.wikiped

ia.org/wiki/Multisample_anti-aliasing (December 2019).
[8] Fxaa, Available from: https://developer.download.nvidia.

com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf.
[9] Nvidia fxaa anti-aliasing performance, Available from: https:

//www.phoronix.com/scan.php?page=article&item=nvidia_f

xaa&num=1.
[10] A. Reshetov, Reducing aliasing artifacts through resampling, in:

EGGH-HPG’12: Proc. of 4th ACM Conference on High Perfor-
mance Graphics, Paris, France, 2012, pp. 77–86.

[11] C. A. O. Labrador, Improved sampling for temporal anti-aliasing
(a sobel improved temporal anti-aliasing), Ph.D. thesis (2018).

[12] Nvidia dlss: Your questions, answered, Available from: https:

//www.nvidia.com/en-us/geforce/news/nvidia-dlss-your-q

uestions-answered/ (February 2019).
[13] X. Chermain, S. Lucas, B. Sauvage, J. M. Dischler, C. Dachs-

bacher, Real-time geometric glint anti-aliasing with normal map
filtering, Proceedings of the ACM on Computer Graphics and
Interactive Techniques 4 (1) (2021) 1–16.

[14] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel,
S. Lacoste-Julien, Painless stochastic gradient: Interpolation,
line-search, and convergence rates, in: Advances in neural infor-
mation processing systems, Vol. 32, 2019.

[15] P. Isola, J. Y. Zhu, T. Zhou, A. A. Efros, Image-to-image trans-
lation with conditional adversarial networks, in: Proc. IEEE
conference on computer vision and pattern recognition, 2017,
pp. 1125–1134.

[16] V. Bruni, D. Vitulano, An entropy based approach for ssim
speed up, Signal Processing 135 (2017) 198–207.

[17] Scenes, Available from: https://docs.unity3d.com/Manual/Cr
eatingScenes.html.

[18] The scene view, Available from: https://docs.unity3d.com/M

anual/UsingTheSceneView.html.
[19] Scene view navigation, Available from: https://docs.unity3d

.com/Manual/SceneViewNavigation.html.
[20] Z. Dengwen, An edge-directed bicubic interpolation algorithm,

in: 3rd International Congress on Image and Signal Processing,
Yantai, 2010, pp. 1186–1189.

[21] R. Keys, Cubic convolution interpolation for digital image pro-
cessing, IEEE Transactions on Acoustics, Speech, and Signal
Processing 29 (6) (1981) 1153–1160.

[22] G. Jyothi, C. H. Sushma, D. S. Veeresh, Luminance based con-
version of gray scale image to rgb image, Int. J. of Computer
Science, Inf. Tech. Res. 3 (3) (2015) 279–283.

[23] Convert rgb image or colormap to grayscale, Available from: ht
tps://www.mathworks.com/help/matlab/ref/rgb2gray.html.

[24] Pixel values, Available from: https://homepages.inf.ed.ac.

uk/rbf/HIPR2/value.htm (updated 2003).
[25] Y. Al-Najjar, S. D. Chen, Comparison of image quality assess-

ment: Psnr, hvs, ssim, uiqi, International Journal of Sci., Engi-
neering Res. 3 (2012) 1–5.

[26] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image
quality assessment: from error visibility to structural similarity,
IEEE Transactions on Image Processing 13 (4) (2004) 600–612.

[27] G. Chen, C. Yang, S. Xie, Gradient-based structural similarity
for image quality assessment, in: Int. Conf. on Image Processing,
Atlanta, GA, 2006, pp. 2929–2932.

[28] U. Sara, M. Akter, M. Uddin, Image quality assessment through
fsim, ssim, mse and psnr- a comparative study, Journal of Com-
puter and Communications 7 (2019) 8–18.

[29] R. G. Deshpande, L. L. Ragha, S. K. Sharma, Video quality as-
sessment through psnr estimation for different compression stan-
dards, Indonesian Journal of Electrical Engineering and Com-
puter Science (2018) 918–924.

[30] A. Horé, D. Ziou, Image quality metrics: Psnr vs. ssim, in:
20th International Conference on Pattern Recognition, Istanbul,
2010, pp. 2366–2369.

[31] Introduction to barracuda, Available from: https://docs.uni

ty3d.com/Packages/com.unity.barracuda@3.0/manual/index

.html.

60

https://vr.arvilab.com/blog/anti-aliasing
http://www.x86-secret.com/articles/divers/v5-6000/datasheets/FSAA.pdf
http://www.x86-secret.com/articles/divers/v5-6000/datasheets/FSAA.pdf
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@6.7/manual/MSAA.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@6.7/manual/MSAA.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@6.7/manual/MSAA.html
https://mynameismjp.wordpress.com/2012/10/24/msaa-overview/
https://mynameismjp.wordpress.com/2012/10/24/msaa-overview/
https://en.wikipedia.org/wiki/Multisample_anti-aliasing
https://en.wikipedia.org/wiki/Multisample_anti-aliasing
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://www.phoronix.com/scan.php?page=article&item=nvidia_fxaa&num=1
https://www.phoronix.com/scan.php?page=article&item=nvidia_fxaa&num=1
https://www.phoronix.com/scan.php?page=article&item=nvidia_fxaa&num=1
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-your-questions-answered/
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-your-questions-answered/
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-your-questions-answered/
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html
https://docs.unity3d.com/Manual/UsingTheSceneView.html
https://docs.unity3d.com/Manual/SceneViewNavigation.html
https://docs.unity3d.com/Manual/SceneViewNavigation.html
https://www.mathworks.com/help/matlab/ref/rgb2gray.html
https://www.mathworks.com/help/matlab/ref/rgb2gray.html
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/value.htm
https://docs.unity3d.com/Packages/com.unity.barracuda@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@3.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.barracuda@3.0/manual/index.html

	INTRODUCTION
	BACKGROUND STUDY
	Super Sampling Anti-Aliasing (SSAA)
	Multi Sample Anti-Aliasing (MSAA)
	Fast Approximate Anti-Aliasing (FXAA)
	Temporal Anti-Aliasing (TXAA/TAA)
	Subpixel Morphological Anti-Aliasing (SMAA)
	Deep Learning Super Sampling (DLSS)
	Normal Filter Anti-Aliasing (NFAA)

	PROPOSED MODEL
	Model Architecture
	Loss Function and Optimizer

	EXPERIMENTAL SETUP ANDRESULT ANALYSIS
	The Dataset
	Quality Comparison
	Image Quality Analysis
	Realtime Processing Analysis

	CONCLUSION AND FUTURE WORK

