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Abstract
Facial acne is a common disease, especially among adolescents, nega-

tively affecting individuals both physically and psychologically. Classify-
ing acne is vital for providing appropriate treatment. Traditional visual
inspection or expert scanning is time-consuming and challenging to dif-
ferentiate acne types. This paper introduces an automated expert system
for acne recognition and classification. The proposed method employs
a machine learning-based technique to classify and evaluate six types
of acne diseases, facilitating the diagnosis process for dermatologists.
The preprocessing phase includes contrast improvement, smoothing fil-
ter application, and RGB to Lab color conversion to eliminate noise and
improve classification accuracy. Next, a clustering-based segmentation
method, k-means clustering, is applied to segment the disease-affected
regions, which then proceed to the feature extraction step. Characteris-
tics of these disease-affected regions are extracted using a combination
of gray-level co-occurrence matrix (GLCM) and statistical features. Fi-
nally, five different machine learning classifiers are employed to classify
acne diseases. The experimental results show that Random Forest (RF)
achieves the highest accuracy of 98.50%, which is promising compared
to state-of-the-art methods.
Contribution of the Paper: Introduce a machine learning-based sys-
tem for accurately classifying six types of acne, achieving 98.50% accu-
racy with the Random Forest classifier.
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1. INTRODUCTION

Acne is a prevalent dermatological condition affecting
individuals irrespective of gender. Its onset is primarily at-
tributed to bacterial presence, obstruction of hair follicles
by oil, accumulation of dead skin cells, and the overproduc-
tion of sebum. Areas rich in sebaceous glands, such as the
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face, forehead, chest, back, and shoulders, are commonly
afflicted. The heterogeneity in acne lesion morphology ne-
cessitates accurate differentiation for effective assessment
and intervention. Moreover, lesion location may provide
insights into underlying conditions, emphasizing the im-
portance of precise acne identification [1].

According to the global acne market study [2], over
90% of the global population is affected by acne. In 2006,
acne afflicted 612 million individuals, a figure that rose
by 10% over the subsequent decade. Projections suggest
that by 2026, nearly 23 million people in India alone will
suffer from acne, representing a compound annual growth
rate of 0.5%. Consequently, global treatment costs are ris-
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ing. Dermatologists often diagnose specific acne conditions
and enumerate acne lesions through visual inspection, a
method that can be laborious and imprecise. Two lead-
ing skin analysis tools in cosmetic surgery are VISIA from
Canfield [3] and ANTERA 3D from Miravex [4]. They aid
in treating skin pores, acne scars, and offer anti-aging so-
lutions. However, these tools are expensive and demand
specialized knowledge for effective utilization [5]. Several
diagnostic methods, such as fluorescence light-based pho-
tography [6] and multi-spectral imaging [7], strive to offer
dermatologists clearer insights into acne lesions and their
characteristics. Despite their precision, these methods re-
quire significant manual effort from dermatologists, espe-
cially considering the varied scales, shapes, and locations
of acne lesions and the diversity in skin tones and lesion
types.

Researchers have recently proposed machine and deep
learning-based techniques to solve these issues and assist
dermatologists. Some of these methods are for acne severity[8,
9], acne grading[10, 11] and only acne detection (acne has
or not) [12]. However, limited studies have been performed
for the acne classification [13, 1, 14, 15, 16]. The most
recent acne detection method, e.g., [12], utilized a hu-
man visual system (HSV) based model for segmentation
and support vector machine (SVM) and two CNN-based
models for detection. Although this method’s accuracy is
higher than other methods, they utilized only 120 Acne
images for training and a total of 200 images for the ex-
periments. In addition, they only detect acne, which can
be divided into two classes: normal skin and acne; they
do not categorize the numerous types of acne. In another
study, Hameed et al. [1] used image processing techniques
for segmentation and a Naive Bayes classifier for four types
of Acne classification. In their experiments, they used only
40 images and obtained 93.42% accuracy. Therefore, the
main challenges are a proper acne recognition system and
a large-scale dataset containing different acne types from
the above observations. In addition, it is also significant
to improve the performance of the automated acne disease
classification clinical trial.

Contributions. Motivated by the abovementioned
challenges, we propose an automated acne disease recogni-
tion and classification method for six classes and a compre-
hensive analysis using a large-scale comparative dataset.
Firstly, the proposed system used some pre-processing be-
fore applying K-means clustering to segment different acne
classes. For feature extraction, the GLCM and statisti-
cal feature selection methods are employed. Five machine
learning classifiers, including decision tree (DT), k-nearest
neighbors (KNN), support vector machine (SVM), random
forest (RF), and logistic regression (LR), are used to clas-
sify six acne classes and compare the acquired results. Our
main contributions are given below.

� We introduce an automated expert system to recog-
nize acne disorders through segmentation and catego-
rize them into six different classes from acne images.

� We applied contrast enhancement, smoothing filter,
and RGB to L ∗ a ∗ b color conversion to better rep-
resent the acne regions and reduce the noise in the
preprocessing stage. Then, the acne-affected areas
are segmented using k-means clustering.

� Two standard feature extraction methods, i.e., GLCM,
and statistical features, are utilized together for acne-
segmented images to improve classification accuracy
in every classifier.

� To demonstrate the system’s robustness, five machine-
learning classifiers are employed to classify acne dis-
ease images with high accuracy.

The rest of this paper is organized as follows: In Section 2,
some previous related works are briefly reviewed. Section
3 describes our proposed system and its subsequent parts,
such as dataset, pre-processing, segmentation, feature ex-
traction, and classification. The experimental setup, train-
ing details, and evaluation matrix are briefly described in
Section 4. Section 5 provides the experimental results in
detail. Finally, we conclude the work with future research
direction in Section 6.

2. Related Works

In this section, we will describe some previous Acne-
related studies that have been done using machine learning
and deep learning-based methods.

Malik et al. [17] built up an imaging strategy for mecha-
nized skin inflammation by reviewing the past approaches.
Discrimination between skin and non-skin pixels was car-
ried out utilizing an automated modified cluster of the K-
means on the CIELab color space and four statistical char-
acteristics to differentiate clusters between Acne and non-
Acne skin pixels. They used mean, variance, entropy, and
energy as the statistical characteristics of the images. At
long last, Acne blobs were characterized into various skin
break-out classes utilizing shading and measurement as pri-
mary features. In their experiments, 70% of the dataset
was used for training, and the remaining 30% was used
for cross-validation and testing. Their final results show
an accuracy of 93.6%. However, they used only 50 images
in their experiment with only four features. On the other
hand, to figure out the area affected by Acne, Abas et
al. [18] used entropy-based filtering and thresholding for
feature extraction of skin lesion classes, discrete wavelet
transform, and GLCM were used. They used only 17 Acne
images to classify six Acne classes, and various classifiers,
namely, Binary Classification Tree, Discriminant Analy-
sis Classifier, k-NN, and Näıve Bayesian Classifier. These
classifiers were used to detect several Acne lesion classes.
They obtained 85.5% accuracy via the Binary Classifica-
tion Tree, while the accuracy of the other classifiers was
comparatively lower.
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Alamdari et al. [19] detected and classified Acne le-
sions using k-means clustering for segmentation; for tex-
ture analysis and color-based segmentation, 3D Gaussian
and HSV-based models were used, respectively. Moreover,
fuzzy-c-means [20] and SVM were utilized to classify Acne
lesions. The two-level k-means clustering algorithm was
proven to be the dominant performer after analyzing differ-
ent imaging segmentation methods, and they reached the
accuracy of 70%. On the other hand, the accuracies of the
fuzzy-c-means and SVM were only 80% and 66.6%, respec-
tively. Their low accuracy value is mainly due to the use of
small amount of the images (only 35 images). In another
study, Kittigul et al. [21] created an Acne detection sys-
tem that used a web camera and a Haar Cascade classifier
[22] to obtain and extract the patient’s anterior face im-
age, then eliminated background pixels with the Grab Cut
segmentation algorithm [23] to retrieve only the patient’s
facial area. Finally, adaptive thresholding [24] and blob
detection [25] have been used to mark the observed Acne
spot. In addition, a potential solution was indicated us-
ing multi-spectral imaging and multi-modal input sources.
However, in this method, no feature extraction and classi-
fiers were implemented to detect and classify Acne images.

Maroni et al. [26] proposed a pipeline to detect and
extract Acne automatically and this pipeline was able to
evaluate Acne lesions and Acne tracking severity as well.
The entire body displayed in the picture was classified us-
ing Haar Cascade detectors, which were used to identify the
frontal face, right portrait, left pattern, and chest, respec-
tively. Body pixels were segmented using a combination
of color, structure, pattern, temporal data through unsu-
pervised identifiers. Ten Random Forest models were ap-
plied to improve features with rich accuracy on FSD public
dataset [26]. However, the participants in this dataset were
not affected by Acne diseases, and they were not patients
actually. For this reason, they collected 100 images from
online websites. The CLElab model has been performed
suitably, and Adaptive Thresholding also performed well
on Acne lesions and healthy skins. Finally, the algorithm
chosen to identify Acne patches and label them in the im-
age was the Laplacian Gaussian filter [27]. Just Acne is
detected in this paper but not classified.

Some recent approaches [1, 28] detected and classified
Acne, which were based on machine learning models. In
[28], the authors utilized some image processing techniques
for only Acne detection, and in [1] for Acne classification.
Both methods used only Naive Bayes classifier which in-
cluded four different types of Acne lesions. Their accu-
racy was about 85.71% and 93.42%, respectively. Zhao et
al. [29] developed a grading system based on 4,700 selfie
images, ranging from ”clear” to ”severe”, to evaluate the
severity of face Acne vulgaris. The image characteristics
were retrieved by utilizing a pre-trained model (ResNet
152) and a transfer learning-based approach. The skin
patch rolling data augmentation was applied, and the Root
Mean Squared Error (RMSE) was 0.482. However, it was
detected the Acne severity only, and the dataset was not

also made publicly available.
Then, the research in Acne disease classification moved

to the deep learning-based methods. For example, Ju-
nayed et al. [15] presented a new model based on deep
Convolutional Neural Networks (CNNs) to detect Acne
classes. In this paper, five Acne classes were used, and
each class contained 60 images which means a total of 360
images were used before applying five augmentation meth-
ods. They achieved an accuracy of 86.28%, 86.11%, and
95.89% for the training, validation, and testing, respec-
tively. Although overfitting was occurred, accuracy was
acceptable. Another CNN-based method was proposed by
Shen et al. [14]. They suggested a new approach for de-
tecting Acne vulgaris and other skin diseases. The authors
used a public dataset of skin and non-skin photographs in
their study. This method used the VGG-16 [30] pre-trained
model to compare the performance. They used augmenta-
tion techniques to expand their dataset in order to prevent
overfitting. The accuracies of the proposed and the VGG-
16 pre-trained models were about 89% and 91%, respec-
tively. Therefore, the proposed model performed slightly
weaker than the pre-trained model, and some Acne images
of papule, cysts, and pustules performed worse in their ex-
periments.

3. Proposed Method

Fig. 1 depicts the step-by-step visualization of the pro-
posed expert system for acne disease recognition and clas-
sification using machine learning-based techniques. A pre-
processing procedure is first performed on our collected
dataset. During the pre-processing stage, the image con-
trast is enhanced, a smoothing filter is applied, and the
color space is transferred from RGB to L ∗ a ∗ b. To avoid
overfitting, we used some augmentation methods. Next,
k-means clustering is applied to segment the input images.
Finally, two feature extraction methods are applied to-
gether to the segmented areas, and these features are used
to classify the acne types. In the following sub-sections,
every step of the proposed architecture is explained in de-
tail.

Pre-processing: In the pre-processing step, the med-
ical images are primarily treated to decrease the distortion
caused by noises and enhance the essential information in
the original image. Three image processing techniques,
such as contrast enhancement, smoothing filter, and RGB
to L ∗ a ∗ b color conversion, are included in our system
to depict acne areas better and eliminate the noises. The
guided image filtering [31] is employed in our system as a
contrast enhancement technique to reduce the input im-
age noise while maintaining the borders of acne diseases
by increasing contrast. Enhancing the images’ edge makes
it simpler for the machine learning models to learn and
discriminate between various types of acne diseases. After
that, the blurring and noise reduction in images are ac-
complished with the help of a smoothing filter [32]. In our
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Figure 1: An overview of the proposed expert system for recognizing and classifying acne disease. Input images are pre-processed through
contrast enhancement, smoothing filter, and L*a*b color conversion and then segmented using k-means clustering. The GLCM matrix and
Statistical feature extraction methods are employed to extract features. The five classifiers, namely logistic regression, decision tree, K-nearest
neighbors, random forest, and support vector machine, are utilized to classify acne diseases.

experiment, the Gaussian filter is applied as a smoothing
filter that blurs images without removing information and
eliminates noises. Some samples of contrast enhancement
and smoothing filter are depicted in the pre-processing por-
tion of Fig. 1. Then, the images are converted from RGB
to L ∗ a ∗ b color space [33]. It can be written as per color
conversion from RGB color space to XY Z color space.XY

Z

 =

 3.240479 −1.537150 −0.498535
−0.969256 1.875992 0.041556
0.055648 −0 : 204043 1.057311

RG
B


To convert XY Z color space into L ∗ a ∗ b, we can assume
that Xn, Yn, and Zn are tri-incentive standards as per the
situation. We can redraft it as the following equation 1:

f(x) =
{
x

1
3 , if x > 0.008856

7.787x+
16

116
, if x > 0.008856

(1)

Then L ∗ a ∗ b equations (2, 3, 4) can be written as:

L =

{
116

(
J

Jn

) 1
3

− 16, if
J

Jn
> 0.008856

903.3

(
J

Jn

)
, if

J

Jn
> 0.008856

(2)

a∗ = 500f(
I

In
)− f(

J

Jn
) (3)

b∗ = 200f(
J

Jn
)− f(

K

Kn
) (4)

the color contrast is defined by I, J, and K, and the white
colorless specular reflection is described by In, Jn, and Kn.
This conversion provides a more accurate representation
of the input images and the acne disease areas, which im-
proves the final classification accuracy dramatically. The
visualization of some L ∗ a ∗ b color conversion images are
shown in Fig. 2.

Figure 2: Visualization of the L*a*b color conversion process step by
step. Here, (a), (b), (c), and (d) denote the visualization of L, a, b,
and L*a*b conversions, respectively.

3.1. Segmentation

In the acne image segmentation process using K-means
clustering, statistical features were primarily introduced
based on texture analysis. Acne lesions often exhibit dis-
tinct textural patterns compared to healthy skin. These
features provided a foundation for differentiating acne from
unaffected areas, optimizing the segmentation step. This
method is used to segment the image into different regions
so that we can do further processing. Here, the main tar-
get is to define K centers, one for each cluster. Since the
other locations cause different results, some repetitive ex-
periments are used in this paper. K-means aims to divide
C observations among k clusters. Assume a set of data
X1, ...., XC with C instances (observations) of a specific

46



CNSER Int. J. Computer Vision Signal Process.

Figure 3: Segmentation and feature extraction results of acne disease are taken as examples. The following list including, (a), (b), (c), (d),
(e), and (f) are extracted feature matrics (C, ρ, E, S, H, µ, σ, σ2, K, RMS, Smoothness, Skewness, and cluster shade (Cs)) of ACC, AC,
AE, AK, AOC, and AP, respectively.

D-dimensional Euclidean value of X. This approach clus-
ters data by comparing the inter-point measurements of
data points to the measurements between points outside
the cluster. To institutionalize this idea, we consider a
template, Vk, affiliated with the Kth cluster. These exper-
iments represent the clusters’ boundaries. The aim is to
identify the middle of each region so that square numbers
from every value are kept at least to the cluster center Vk

nearest to it [34]. The objective function J is generally
referred to as distortion measure, is given as follows (5):

J =

C∑
i=1

K∑
j=1

(||Xi − Vk||)2 (5)

where (||Xi − Vk||)2 is the Euclidean distance between Xi

and Vk. Also, K is the number of data points in k clusters,
and C is the number of the cluster centers.

3.2. Feature Extraction

Feature extraction is pivotal in machine learning, guid-
ing the optimal use of variables for specific classifiers. In
image classification, the Gray Level Co-occurrence Matrix
(GLCM) texture attributes are frequently employed [35].
However, GLCM can exhibit reduced accuracy near class
boundaries. To address this, we integrate statistical fea-
tures with GLCM attributes. This combination not only
enhances textural feature extraction from images but also
mitigates GLCM’s aforementioned limitation. Let, f(x, y)
is a two-dimensional image with M×N pixels and L gray
levels. In f(x, y), suppose (x1, y1) and (x2, y2) to be two
pixels, the length between them is d, and the point among
them and the ordinate is h. At that point turns into a
GLCM P (i, j, d, h): Let us assume f(x, y) is a digital im-
age in two dimensions of Z by G pixels with gray level
numbers L. More specifically, we surmise that (x1, y1)
and (x2, y2) are two pixels in f(x, y), the distance is T ,
and the point between the two and the ordinate is O. At
that point, a GLCM Q(i, j, T,O) turns according to [35] is

composed as 6:

Q(i, j, T,O) = (x1, y1), (x2, y2) ∈ Z ×G :

T,O, f(x1, y1) = i, f(x2, y2) = j
(6)

We utilized five GLCM features in our experiments,
such as Contrast C, Correlation (ρ), Energy E, Entropy
S, Homogeneity H, and cluster shade (Cs) Below are their
corresponding equations 7 - 11.

C =

L−1∑
i=1

L−1∑
j=0

(i− j)2P (i− j) (7)

ρ =

∑L−1
i=1

∑L−1
j=0 i.j.P (i, j)− µx.µy

σx.σy
(8)

E =

L−1∑
i=1

L−1∑
j=0

(i, j)2 (9)

S =

L−1∑
i=1

L−1∑
j=0

P (i, j) logP (i, j) (10)

H =

L−1∑
i=1

L−1∑
j=0

P (i, j)

1 + (i− j)2
(11)

Cs =

L−1∑
i=1

L−1∑
j=0

(i+ j − i.p(i, j)− j.p(i, j))
3
p(i, j) (12)

where µx, µy, σx and σy are the sum of estimated and
modification standards for the row and column matrix cor-
respondingly.

Based on the findings in [36], we have selected a few
statistical features that can be used to identify Acne dis-
eases. Here, we have provided the statistical features which
are selected in our system. The related equations for the
mentioned statistical features are as equations (13 - 17):

Mean,µ =

∑N
i=1 GSi

N
(13)
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Table 1: Description of the five classifiers used in the proposed system.

Classifiers Description
LR LR is used to predict the value of the deciding y variable when the y variable is y [0, 1], the negative

class is 0, and the positive class is 1. Similarly, it can also be used for multi-classification to identify
the value of y when y [0,1,2,3] is provided. Our LR model is Multinomial and the logistic function
is: logit(k) = lnk - ln (1-k).

SVM SVM transforms nonlinear data into a higher-dimensional space in which it is linearly separable,
thus improving its classification accuracy. To divide several classes, hyperplanes are used, and the
optimum hyperplane is the one that maximizes the margin between the classes. Because of its
strong generalization capacity, it is utilized effectively in a wide range of classification areas. In
this experiment, we have used the linear kernel function, and the parameter value of C is 55.

RF The random forest is competent in locating null values from a vast number of datasets and can
give a more accurate result than other methods for data mining. The tree’s maximum height is an
unlimited integer, and the number of attributes is zero, which is selected randomly in this work.
The size of each RF bag is equal to the percentage of training data size.

DT As with a tree, DT shapes include leaves or decision nodes that may be selected. It is composed
of internal and external nodes in the system. The offspring nodes that visit the following nodes
are among the internal nodes that make decisions. We have utilized the Gini index as a degree of
impurity. Entropy is for information gain, the minimum number of the split is 2, and the maximum
depth of the tree is infinity. Note that the expansion of nodes continues until all leaves are pure
or when the minimum number of split samples is reached for all leaves.

KNN As an example, when KNN predicts the class label of new input, it is compared with the similarity
of new input to the input’s samples from the training set. This condition is fulfilled if the new input
is identical to samples from a previously trained set. Usually, KNN classification performance is
not very excellent for the classification problem. Here, we have set the value of K as 7, and the
Manhattan distance is utilized.

Standard deviation,σ =

√∑N
i=1(GSi − µ)2

N
(14)

Variance,σ2 =

∑N
i=1(GSi − µ)2

N
(15)

Kurtosis,K =
1
N

∑N
i=1(GSi − µ)4

( 1
N

∑N
i=1(GSi − µ)2)2

− 3 (16)

Skewness,γ =
µ−No

σ
(17)

we have addressed the N number of pixels in defective
districts, where GS represents the grayscale shading power
of a pixel, µ, and No addressed the mean and mode of the
grayscale color intensity of all pixels separately.

Fig. 3 depicts the outcomes of our selected feature ex-
traction techniques (GLCM and Statistical) for six acne
disease classes that are absolutely robust to increase the
classification accuracy. Moreover, in Table 3, it is observed
that we were able to achieve higher accuracy in every clas-
sifier by using our combined feature extraction methods.
The feature map in Fig. 3 represents the value of GLCM
features (Contrast C, Correlation (ρ), Energy E, Entropy
S, Homogeneity H, and cluster shade (Cs)), Statistical fea-
tures (mean µ, standard deviation σ, variance σ2, kurtosis
K, and skewness γ), RMS, and smoothness respectively.

Classification: For the classification of acne diseases,
five machine learning classifiers, namely LR, DT, KNN,
SVM, and RF, are utilized. These classifiers are shortly
explained in Table 1.

4. Experiements

Dataset: We collect 320 images from the public plat-
form Dermnet (https://dermnet.com/), and 120 images
from New Zealand Dermatologists (https://dermnetnz.
org/) prior to applying augmentation. A total of 2100 im-
ages are used for our experiments. There are 410, 300, 340, 330, 370,
and 350 images for ACC, AC, AE, AK, AOC, and AP
classes, respectively. The dataset is divided into two parts:
training and testing. 80% images (1680 images) are used
for training and 20% images (420 images) for testing. Uti-
lizing a 5-fold cross-validation [37] technique and averaging
the results, the proposed method’s performance is assessed.

Experimental Setup: Experiments in this paper are
done using the following computing system: Intel Core i9
Central Processing Unit (CPU) operating at 3.60 GHz, 64
GB of RAM, and an NVIDIA Geforce RTX 2080 Super
GPU with 8GB of GPU memory. All the detection and
classification computations are implemented using MAT-
LAB (R2016a) software.

Training Details: We divided our dataset into two
parts: training and testing. We employed the holdout ap-
proach [38] to specify the number of data allocated for
training and testing [39]. Around 66% of the sample data
set (1387 color images) is used for training, and the rest
(713 color images) is used for testing. Additionally, the
original training dataset is split into two smaller subsets:
one for testing, and another one for validation. Next, about
66% of the training set (916 images) is utilized for the clas-
sification, and the rest (471 images) is used for error eval-
uation. To identify the best classifier, holdout techniques
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[38] is applied multiple times. After extensive experiments,
the performance of all of the classifiers is analyzed.

Evaluation Metrics: For evaluating the performance
of each classifier, accuracy cannot be asserted as a thor-
ough measurement for the estimation of the open exhibi-
tion. This is because, it would not be ideally suited for eval-
uating identification characteristics acquired from unequal
class distribution datasets, because for example, the quan-
tities of samples in different classes vary greatly. Other
assessment matrices for evaluating the output of a classi-
fier are built on the Confusion Matrix [40], as described
in [41]. For a two-class scenario, a binary Confusion Ma-
trix (CM) shows the number of true positives (TPs), false
negatives (FNs), false positives (FPs), and true negatives
(TNs). CM for a multi-class classification (W), can be
written as the following equation:

W = [bij ]nxn (18)

The multi-class CM (W) is a n × n(n > 2) square ma-
trix. It has n rows and n columns, totally including n2

entries. There is no simple way to calculate the number
of FPs (

∑n
j=1,j ̸=i bji), FNs (

∑n
j=1,j ̸=i bij), TPs (bii), and

TNs (
∑n

j=1,j ̸=i

∑n
k=1,k ̸=i bjk) for the multi-class CM. The

results of TPs, FNs, FPs, and TNs are determined and as
per the regulations for multi-class matrix as described in
the CM. The final CM dimension is 2x2, and the mean
values are kept in n confusion matrices for each class. An
uncertainty matrix, also known as an error matrix, can
be utilized for statistical classification. The is used to
measure the accuracy ( (TP+TN)

(TP+TN+FP+FN) ×100(%)), preci-

sion ( (TP )
(TP+FP ) × 100(%)), specificity ( (TN)

(FP+TN) × 100(%)),

sensitivity ( (TP )
(FN+TP ) × 100(%)), false positive rate (FPR)

( (FP )
(FP+TN)×100(%)), and false negative rate (FNR) ( (FN)

FN+TP ×
100(%)).

Table 2: The binary Confusion Matrix (CM) for every class.

Class Matrix Class Matrix

ACC Actual

Predicted

AC Actual

Predicted
+ - + -

+ 77 5 + 57 3
- 3 335 - 3 357

AE Actual

Predicted

AK Actual

Predicted
+ - + -

+ 63 5 + 64 2
- 4 348 - 2 352

AOC Actual

Predicted

AP Actual

Predicted
+ - + -

+ 72 2 + 68 5
- 2 344 - 2 345

5. Results and Discussion

5.1. Performance Analysis

Table 2 shows the binary CM for each of the six acne
disease classes of RF utilizing our dataset. As can be seen

Figure 4: Multi-class confusion matrix for the RF classifier.

in this table, the performance of our classifiers is compet-
itive on the acne dataset, as shown by the large number
of TP values we obtained in our research and the low mis-
classification rates in each of the classes.

Fig. 4 represents the multiclass CM for the RF classi-
fier, where the X and Y axes represent the predicted and
true levels, respectively. The misclassification rate for the
RF classifier is limited. The number of correctly recognized
images in ACC and AOC classes is 77 and 72, respectively,
while the misclassification value is only 5 and 2, respec-
tively. Similarly, the misclassification values for AC, AE,
AK, and AP are just 3, 5, 2, and 2 correspondingly, demon-
strating the RF’s competitive performance.

Table 3 displays the performance of five machine learn-
ing models, namely, DT, KNN, SVM, RF, and LR in terms
of accuracy, precision, sensitivity, specificity, FPR, and
FNR for each of the Acne types (i.e., ACC, AC, AE, AK,
AOC, and AP). The average accuracy of LR, DT, KNN,
SVM, and RF are 96.87%, 96.99%, 97.22%, 98.06%, and 98.50%
respectively, according to the data presented in this table,
which again RF shows the best performance. RF exceeds
not only in terms of accuracy but also in other evaluation
metrics, such as precision (94.83%), sensitivity (96.12%),
specificity (98.95%), FPR (1.04%), and FNR (3.88%), re-
spectively. This Table also includes the individual accuracy
for each of the diseases. For example, AK got the highest
accuracy of 99.07% while AE, has the lowest accuracy, with
97.86% for RF classifier.

To further analyze the results of our method, we uti-
lized the receiver operating characteristic (ROC) curves
[42] and calculated the area under it, known as AUC. De-
termining which classifier is superior on average can be
estimated using the area under the ROC curve. A ROC
curve depicts the connection between the FPR and the
TPR at various thresholds where TPR refers to Y and
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Table 3: Classifier’s performance on different classes on Accu-
racy(Acc), Precision(Pre), Sensitivity(Sen), Specificity(Spe), FPR,
and FNR.
Classifiers Classes Acc Pre Sen Spe FPR FNR

LR

ACC 97.14 89.39 89.39 98.35 1.65 10.61
AC 97.34 94.31 95.08 98.09 1.91 4.92
AE 95.91 84.62 89.19 97.11 2.89 10.81
AK 96.73 85.48 88.33 97.90 2.10 11.67
AOC 98.16 95.40 94.32 99.00 1.00 5.68
AP 95.91 86.96 90.91 97.01 2.99 9.09

Total Average 96.87 89.36 91.20 97.01 2.99 8.80

DT

ACC 96.31 84.85 87.50 97.64 2.36 12.50
AC 96.73 93.50 93.50 97.81 2.19 6.50
AE 96.32 85.90 90.54 97.35 2.65 9.46
AK 98.36 93.55 93.55 99.06 0.94 6.45
AOC 97.75 94.25 93.18 98.75 1.25 6.82
AP 96.52 89.13 92.13 97.50 2.50 7.87

Total Average 96.99 90.20 91.73 98.02 1.92 8.27

KNN

ACC 96.72 86.36 89.06 97.88 2.12 10.94
AC 96.11 91.87 92.62 97.28 2.72 7.38
AE 97.55 89.74 94.59 98.07 1.93 5.41
AK 97.75 88.71 93.22 98.37 1.63 6.78
AOC 98.16 94.25 95.35 98.76 1.40 4.65
AP 97.55 92.39 94.44 98.25 1.75 5.56

Total Average 97.22 90.55 93.21 98.10 1.90 6.79

SVM

ACC 98.77 93.94 96.88 99.06 0.94 3.12
AC 97.96 95.93 95.93 98.63 1.37 4.07
AE 96.93 89.74 90.91 98.06 1.94 9.09
AK 98.36 91.94 95.00 98.83 1.17 5.00
AOC 98.57 96.55 95.45 99.25 0.75 4.75
AP 97.75 93.48 94.51 98.49 1.51 5.49

Total Average 98.06 93.59 94.78 98.72 1.28 5.22

RF

ACC 98.13 93.91 96.26 98.53 1.47 3.74
AC 98.57 95.02 95.00 99.17 0.83 5.00
AE 97.86 92.65 94.03 98.58 1.42 5.97
AK 99.05 96.97 96.97 99.44 0.56 3.03
AOC 99.07 97.30 97.31 99.42 0.58 2.69
AP 98.33 93.15 97.14 98.57 1.43 2.86

Total Average 98.50 94.83 96.12 98.95 1.04 3.88

FPR to X axes. Fig. 5 depicts the ROC curves and area
under curves of all five classifiers used in this study. This
Fig. shows that RF acquires more AUC than the other four
classifiers, with 85.8%. On the other hand, the LR has the
lowest AUC (77.9). Furthermore, the AUC for KNN is
2.4% lower than that of the SVM (84.9 vs. 82.5) and 9.3%
higher than that of the decision tree (82.5 vs. 73.2).

In Fig. 6, the RF’s performance was further validated
across all Acne disease classes by the ROC curve, which
helped to make our claim in contribution more strong.
Based on our observations, we discovered that the AUC of
every class is excellent; among them, the Acne Keloidalis
class has the most significant amount of AUC (98%), and
the Acne Pustular class has the lowest amount of AUC
(73%). Finally, the AUC for the RF class as a whole is
85.8% on average.

Table 4: The performance of the feature extraction methods on dif-
ferent classifiers (LR, DT, KNN, SVM, and RF).
Feature Extraction LR DT KNN SVM RF

Statistical 87.56% 88.76% 89.93% 90.02% 90.61%
GLCM 92.13% 93.31% 94.67% 95.11% 95.31%

Statistical+GLCM 96.87% 96.99% 97.22% 98.06% 98.50%

Figure 5: AUC-ROC curves of five different ML classifiers.

5.2. Qualitative Analysis of Feature Extraction

Table 4 shows the performance analysis utilizing feature
extraction techniques. When the Statistical and GLCM
feature approaches are used individually, the system’s per-
formance is worse than when the two methods are used to-
gether, as shown in Table 4. The GLCM approach fails to
recognize image boundaries, whereas the Statistical method
performs well when used for texture classification and edge
detection. Consequently, their individual performance is
lower, but their combined performance is remarkable in
every classifier. For instance, when Statistical and GLCM
methods perform separately in RF, the accuracy is 90.61%
and 95.31%, respectively. However, during the perfor-
mance of their combination, the precision is increased by
roughly 8% (98.5% vs. 90.61%) and 3% (98.5% vs. 95.31%),
respectively.

Fig. 7 portrays the performance investigation of accu-
racy vs. the number of features we employed. RF is an
ensemble model, so it is projected to perform excellently.
From Fig. 7, we can see that as the number of features
rises, the performance of the RF model does not degrade.
Similarly, SVM also performs well on our dataset without
showing any fluctuation. On the other hand, in LR, DR,
and KNN, during feature analysis, they showed some fluc-
tuations though their accuracy is good. It is most likely
due to a violation of the feature’s independence. However,
it is worth mentioning that utilizing a high number of fea-
tures may result in a worse performance of the model on
the test dataset.

5.3. Comparison

The earlier studies on acne detection and classification
are depicted with their employed images in Table 5. In
2016, Abas et al. [18], and Hameed et al.[1] used ma-
chine learning classifiers, and their obtained accuracy was
85.5% and 93.42%, respectively. Shen et al.[14], Junayed
et al.[15], and Isa et al.[16] employed deep learning clas-
sifiers and their obtained accuracy were 91.95% (VGG),
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Figure 6: The AUC-ROC curves for six acne classes, (a)-(f): the ROC curves of ACC, AC, AE, AK, AOC, and AP using RF classifier.

Figure 7: The average accuracy of the images using Statistical and
GLCM features together in different classifiers (LR, DT, KNN, SVM,
and RF).

and 91.35% (Proposed CNN), 95.89%, and 91.25%, re-
spectively. However, it is important to mention that these
strategies were developed using private datasets that are
not publicly accessible. As a result, this comparison is ex-
pressed from different datasets. We attempted to contact
these researchers to get the implementation parameters but
was not reachable.

To have a fair comparison between our method with
state-of-the-art, we must implement state-of-the-art meth-
ods on the given dataset. After searching deeply, we got

Table 5: Comparison with state-of-the-art on different datasets.
Approaches Year Dataset size Accuracy

Abas et al.[18] 2016
17 acne images,

6 classes
85.5%

Shen et al.[14] 2018
3000 skin-

nonskin images
91.95% (VGG)
91.35% ( CNN)

Junayed et al.[15] 2019
360 images,
5 classes

95.89%

Hameed et al.[1] 2020
40 images,
4 classes

93.42%

Isa et al.[16] 2021
215 images,
4 classes

91.25%

Ours (Proposed) 2022
440 images,

6 classes (Original)
98.50% (RF)

Table 6: Comparison with state-of-the-art on same dataset.

Datasets Classes Size Approaches Accuracy

Acne Classes 5 1800
AcneNet [15] 95.89%
Our System 97.13%

Ours 6 2100
AcneNet [15] 96.79%
Our System 98.50%

one source code, and one dataset from this related work
[15]. Therefore, we only compared the proposed method
with the AcneNet[15] and used the same dataset for im-
plementation. Moreover, we utilized their source code on
their dataset using our method. Table 6 represents the
evaluated result of the comparison. It can be seen that our
system, through RF, is applied on the AcneNet data set
with 1800 images and five different classes of Acne disease
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Figure 8: The classification and misclassification results of the proposed system. We demonstrated 6 acne images. Col 1-3: correctly classified
images, their histograms, and scores (bold scores for the correct classes). Col 4-6: wrongly classified images, their histograms, and scores (red
scores for the misclassified classes and blue scores for the correct classes) respectively.

achieved 1. 24% more precision than AcneNet (97. 13% vs.
95. 89%). On the other hand, while AcneNet is applied to
our dataset, our system also showed higher performance
in terms of accuracy (98.50%) with 2100 images and six
different Acne disease classes.

5.4. Misclassification

Fig. 8 depicts the classification and misclassification
performance of our proposed model with the histogram on
the acne disease images. Six acne disease images have been
taken into consideration, where three of them are predicted
correctly (first column), and the rest failed in prediction
(fourth column). Still, our system does not identify some
of the images with severe and blurry acne. For example,
the fourth column’s first, second, and last images are a lit-
tle bit blurry and have severe acne. For this reason, these
images are misclassified into AC, AE, and AOC classes, re-
spectively, instead of ACC, AC, and AE classes. However,
they are wrongly classified, but our findings are not much
different from the scores of the actual images (46.59% vs.
34.77%, 43.72% vs. 31.25%, and 40.31% vs. 28.87%). The
severity of acne is readily apparent from the histogram.
For example, the first image (col 1) has less acne on its left
and right, so we got values between 50 to 200.

6. Conclusion

This article presented an automated system that rec-
ognizes and classifies six acne diseases. A pre-processing
step that included contrast enhancement, smoothing fil-
ter, and L ∗ a ∗ b color conversion was performed to re-
move noise from the input images and provide better vi-

sualization. We extracted the GLCM and statistical fea-
tures before performing segmentation using k-mean clus-
tering. Finally, extracted features were used for training
five classifiers to recognize and classify acne diseases. The
RF classifier achieved 98.50% accuracy compared to other
classifiers, a promising performance. However, our pro-
posed system is unable to distinguish specific acne disease
images. Therefore, possible future works can be focused on
reducing the misclassification results and making a more
uniform dataset with different acne classes to develop a
more effective detection, recognition, and grading system
for different types of acne disease.
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