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Abstract
The paper investigates the direction-of-arrival (DOA) estimation of nar-
row band signals with conventional co-prime arrays by using efficient
probabilistic Bayesian neural networks (PBNN). A super resolution DOA
estimation method based on Bayesian neural networks and a spatially
overcomplete array output formulation overcomes the pre-assumption
dependencies of the model-driven DOA estimation methods. The pro-
posed DOA estimation method utilizes a PBNN model to capture both
data and model uncertainty. The developed PBNN model is trained to
do the mapping from the pseudo-spectrum to the super resolution spec-
trum. This learning-based method enhances the generalization of un-
trained scenarios, and it provides robustness to non-ideal conditions, e.g.,
small angle separation, data scarcity, and imperfect arrays, etc. Simu-
lation results demonstrate the root mean square error (RMSE) and loss
curves of the PBNN model in comparison with deterministic model and
spatial-smoothing MUSIC (SS-MUSIC) method. The proposed Bayesian
estimator improves the DOA estimation performance for the case of low
signal-to-noise ratio (SNR) or with a limited number of model trainable
variables or spatially adjacent signals.
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1. INTRODUCTION

The co-prime arrays are class of sparse arrays, which
can achieve higher degrees-of-freedom (DOF) that can be
exploited in both beamforming and DOA estimation [1].
The coprime arrangement has shown to possess the ca-
pability of cancelling spatial aliasing [2], Though the side
lobes may still exist in the beampattern that affects the res-
olution of a DOA estimation algorithm. Therefore, DOA
estimation approaches are needed to further explore the
advantage of the co-prime arrays. The earlier approaches
rely on the subspace-based DOA estimation methods such
as multiple signal classification (MUSIC) [3, 4], etc. Mean-
while, these methods require spatial smoothing to restore
the rank of the signal covariance matrix [5]. A short and
non-exhaustive list of recent works is based on sparse re-
construction so as to use all the unique lags [6, 2]. How-
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ever, these model-driven methods face great robustness
challenges under non-ideal conditions [4].

Another approach provides robust performance against
non-ideal conditions include the use of deep convolutional
neural networks in [2, 7]. Nevertheless, it is based on the
deterministic neural networks. The necessity to develop
an approach that exhibits a robustness to the adverse en-
vironment. Probabilistic deep learning removes this lim-
itation by quantifying and processing the uncertainty [8].
To further tackle the model and data uncertainty, an off-
grid DOA estimation method is proposed from the per-
spective of variational Bayesian inference [9]. Motivated
by the advantages of Bayesian neural networks in [10], this
deep probabilistic model is developed based on the normal-
izing flows for Bayesian neural network to model complex
probability distributions [11].

The main contribution of this paper is mainly to con-
sider a probabilistic approach integrated with the deep
learning that allows to account for the uncertainty in DOAs
estimation of co-prime arrays [11], so that the trained model
can assign less levels of confidence to incorrect DOAs pre-
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dictions. The model is developed by balancing between
the quality and footprint metrics toward achieving Pareto-
optimal model for the purpose of further on-device deploy-
ment [12]. The PBNN model is created by using the Ten-
sorFlow Probability (TFP) library [13]. Many concepts
have been used throughout this paper, including latent
variables [14], probabilistic layers [15], bijectors [16], ev-
idence lower bound (ELBO) optimization, and Kullback-
Leibeier divergence (KL) divergence regularizers [17] to de-
velop the PBNN model.

The sparsity-inducing DOA estimation methods are gen-
erally based on the sparse Bayesian learning (SBL), these
methods have been demonstrated to achieve enhanced pre-
cision [18, 4]. However, the learning process of those meth-
ods converges much slowly when the SNR is relatively
low. To overcome this obstacle in this paper, the co-
prime arrays is used which provides high SNRs. More-
over, the PBNN model offers an adaptation to various ar-
ray imperfections and enhanced generalization to unseen
scenarios. The Bayesian neural networks (BNN) focuses
on marginalization, the estimates would be maximum a
posteriori (MAP), and it relies on variational inference and
normalization flows to find the optimal values. It quanti-
fies the model and data uncertainty to explain the trust-
worthiness of the prediction. Thereby avoiding overfitting
problem.

The key contributions of this paper are: 1) a proba-
bilistic approach is being integrated with a DL-approach
for DOA estimation of coprime arrays. 2) the proposed
DOA estimation method enhances the generalization of un-
trained scenarios, and it also provides robustness to non-
ideal conditions, 3) the PBNN model offers a deep learning
framework with variational Bayesian networks to directly
learn the mapping from the pseudo spectrum to the su-
per resolution spectrum especially at low SNR, and 4) the
DOA estimation based PBNN accounts for the modeling
of data and model uncertainty.

The remainder of this paper is organized as follows:
Section 2 reviews the signal model of the conventional co-
prime arrays. Section 3 presents the proposed approach
in DOA estimating of narrowband signals based on spa-
tially overcomplete array output formulation and prepro-
cessing and feature extraction. Section 4 introduces effi-
cient PBNN model and its implementation with a coarse-
refinement procedure. Simulations results of the proposed
DOA estimation method are presented in Section 5 along
with evaluating the results and comparing it with a deter-
ministic model and a co-prime spatial smoothing MUSIC
(SS-MUSIC) method [19]. The conclusions are drawn in
Section 6. The presented deep learning approach tends to
bring more reliable DOAs estimation, and it has the po-
tential to be applied in real-world environments [20].

Figure 1: Geometry of co-prime arrays. Adapted from [3].

2. SIGNAL MODEL OF CO-PRIME AR-
RAYS

The co-prime arrays are the union of two uniform lin-
ear sub-arrays as illustrated in Fig. 1. One sub-array con-
sists of 2M -elements with a spacing of N units. The other
composed of N -elements with a spacing of M units. The
positions are given by the set P in [6] as

P = {Mnd, 0 ≤ n ≤ N − 1} ∪ {Nmd, 0 ≤ m ≤ 2M − 1}.
(1)

Where M and N are co-prime, and it is assumed that
M < N . The zeroth sensor positions are collocated, so
the co-prime arrays consist of N + 2M − 1 elements. The
fundamental spacing d usually sets to a half-wavelength
to avoid the spatial aliasing. K independent narrow band
sources s(t) = [s1(t)s2(t)...sK(t)] are impinging on the co-
prime arrays from the directions {θ1, ..., θK}. The array
output is formulated in [5] as

x(t) =

K∑
k=1

a(θk)sk(t) + n(t) = As(t) + n(t), (2)

where A = [a(θ1),a(θ2), ...,a(θK)] denotes the array man-
ifold matrix, and

a(θk) = [e−j2πd1/λ sin θk , ..., e−j2πdN+2M−1/λ sin θk ]T (3)

is the steering vector corresponding to θk. The d1, d2, ...,
dN+2M−1 hold the information of the sparse elements po-
sitions. Whereas [.]T denotes the transpose of a matrix.
s(t) represents the source signals vector with sk(t) dis-
tributed as CN (0, σ2

k). The source signals are assumed
to be temporally uncorrelated. The entries of the noise
vector n(t) are assumed to be independent and identically
distributed (i.i.d) random variables. Also, n(t) follows a
complex Gaussian distributed CN (0, σ2

n), and their entries
are not correlated with source signals.

3. PROPOSED APPROACH

The proposed DOA estimation method for co-prime
arrays is illustrated in Fig. 2. The array output is pre-
processed to be used by a Bayesian neural network-based
model for classification. The pseudo spectrum is calculated
from the observation vector and the extended array man-
ifold matrix of a virtual array. This pseudo spectrum is
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Figure 2: Architecture of the proposed DOA estimation method.

used as the input vector of the PBNN model, and the cor-
responding super resolution spectrum will be recovered in
the output. Thus, this allows to integrate the probabilis-
tic deep learning into a super-resolution DOA estimation
method. In addition to, this processing fully maintains the
virtual array and effectively improves the original SNR.
However, this implies many numbers of parameters, la-
tency, resources required to train, etc. which are increased
significantly. Consequently, it has become important to re-
duce these footprint metrics of a model as well, not just
its quality. While this model can perform well on the clas-
sification task it is trained on, it might not necessarily be
efficient enough for direct deployment in the real world.
Therefore, the common theme around the model would be
efficiency in terms of inference and training phases.

Here, the PBNN is developed based on Pareto-optimality
approach discussed in [12]. To this end, compression tech-
nique helps trade off some quality for a better model foot-
print such as model size, latency, training resources etc.
It worth to note that many machine learning models, like
deep neural networks, can extract the necessary features
from large inputs automatically. However, there are two
main problems with this approach i.e., computational com-
plexity and they require lots of training dataset. So, this
takes a lot of processing power to automatically learn what
features are useful for the classifiers. Moreover, it is re-
quired to store, at least, that amount of data in memory,
and be able to perform mathematical operations on each
of those values. Thus, the objective is to keep the model
being efficient as small and fast as possible. Feature ex-
traction fulfills this requirement, where it builds features
from raw data by reformatting, combining, transforming
primary features into more valuable features as outlined in
the next subsection.

3.1. INPUT PROCESSING AND FEATURE EXTACTOR

The covariance matrix R is given by [1]

R = E[x(t)xH(t)] =

K∑
k=1

µka(θk)a
H(θk) + σ2

nI, (4)

where R can only be estimated using Q snapshots in prac-
tical applications, i.e.

R̂ =
1

Q

Q∑
q=1

x(tq)x
H(tq) = R+∆R, (5)

where R̂ is the maximum likelihood estimator of R and
∆R is the estimation error of R [2]. By vectorizing R̂, the
observation vector of the virtual array is given in [3] as

y = vec ˆ(R) = vec(R) + vec(∆R)

= Ãµ+ σ2
nvec(I) + ∆y, (6)

where

Ã = [a∗(θ1)⊗ a(θ1),a
∗(θ2)⊗ a(θ2), ...,a

∗(θK)⊗ a(θK)]

= [ã(θ1), ã(θ2), ..., ã(θK)], (7)

⊗ represents the Kroncher product and (.)∗ is the con-
jugate operation. The signal of interest becomes µ =
[µ1, µ2, ..., µK ]T, µk denotes the input signal power of the
kth sources and ∆y = vec(∆R), where ∆y becomes negli-
gible as the number of snapshots Q → ∞ under stationary
and ergodic assumptions. Note that y amounts to the re-
ceived data from a virtual array with a much larger aper-
ture defined by the virtual steering matrix Ã having the
co-array lag locations [5]. Therefore Ã behaves like the
manifold of a longer equivalent virtual array [6].

Next, by removing the repeated elements of y and sort-
ing the remaining in an increasing order from −(MN+M−
1) to (MN + M − 1), the output ỹ is extracted without
redundancy for a linear model [3]. By extending the cor-
responding steering vector, the output of the virtual array
can be reconstructed in [1] as

ỹ = Bµ+ σ2
nvec(I),

B = [b∗(θ1)⊗ b(θ1),b
∗(θ2)⊗ b(θ2), ...,b

∗(θW )⊗ b(θW )],
(8)

where B ∈ C(N+2M−1)2×W . µ = [µ1, µ2, ..., µW ]T, W ≥
K. [θ1, θ2, ..., θW ] is sampled from the spatial spectrum
of incident signals with an interval of ∆θ. The spatial
spectrum µ is constructed withW grids, which has nonzero
values at the true signal directions. The pseudo-spectrum
is given by [1]

µ̃ = BHỹ, (9)

as the input of the Bayesian neural network. This strat-
egy maintains the virtual array generating from co-prime
arrays, and it effectively improves the original SNR [7].
To demonstrate the resolution of the pseudo-spectrum µ̃
of co-prime arrays and shows how it helps in training of
the Bayesian neural network. Consider co-prime arrays
consisting of 10 physical antenna elements, which is de-
signed by assuming M = 3 and N = 5. Suppose two
different signal sources are impinging on the array from
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(a) Scenario As, 4 signal sources with 0dB.

(b) Scenario Bs, 10 signal sources with 0dB.

Figure 3: Resolution predominance of the pseudo spectrum µ̃ of a
coprime arrays a) 4 signals with 0dB, (b) 10 signals with 0dB.

two directions sets As = {−65o,−23o, 4o, 36o} and Bs =
{−65o,−50o,−27o,−15o,−5o, 5o, 15o, 35o, 47o, 61o}.
As shown in Fig. 3, coprime arrays achieve higher DOF
and resolution.

4. DOA ESTIMATION BASED ON PBNN
MODEL

The idea is to create a neural network with a weight un-
certainty by combining the neural network with Bayesian
inference. Usually, there are two categories of uncertainty;
aleatoric and epistemic [11], so there is a necessity to intro-
duce a method for designing a deep learning model that ac-
counts for the uncertainty. In practice, and especially con-
sidering the dataset as being finite, there will most likely be
many possible parameters values that can do a good job
of modeling the relationship between the dataset inputs
and the targets values. If more dataset is being collected,
then the model would have more information about that
relationship, and the likely sets of model parameters would
probably narrow down. This likely set of parameters val-
ues given a dataset is represented as a distribution over all
possible parameter values and is called the posterior distri-
bution [16]. Conventionally the term weights will be used
to refer to weights and biases for the remainder sections of
the paper. Here, the PBNN model is developed based on

the use of probabilistic neural network [16] and the proba-
bilistic layers are implemented by employing TFP library
[17].

4.1. BAYESIAN INFERENCE AND POSTERIOR PROB-
ABILITY

The Bayesian approach is usually implemented by using
Backprop algorithm [14], that uses variational inference to
give an approximation of the posterior distribution over
the model weights[9]. Concisely, the true labels and the
likelihood function are used to find the best weights of
the Bayesian neural network [13]. For instance, the neural
network is a function that maps a pseudo-spectrum data
point µ̃i to the proper parameters of some distribution.
The PBNN model with weights W is developed to classify
data points µ̃i. Hence, the neural network prediction (the
feed-forward value) µ̂i is defined in [16] as

µ̂i = BNN(µ̃i|W). (10)

Determining W implies that training a model and assum-
ing that the prediction µ̂i forms a part of a distribution
that the true label is drawn from. Let the data be µ̃i and
the true labels µi for i = 1, ..., Ns, where Ns is the number
of training samples. Then the training dataset is given as

D = {(µ̃i, µi), ..., ((µ̃Ns , µNs)}. (11)

For each point µ̃i has the corresponding prediction µ̂i,
where it assumes specifying a distribution in addition to
the true label µi. The weights of the trained neural network
are then those that minimize the negative log-likelihood
loss function in [10] as

W∗ = arg
W

min(−
Ns∑
i

logL(µi|µ̂i)),

= arg
W

min(−
Ns∑
i

logL(µi|BNN(µ̃i|W))). (12)

In practice, determining the true optimum W∗ is not al-
ways possible. Instead, an approximated value is sought
using optimization algorithms such as root mean squared
propagation (RMSProp) or adaptive moment estimation
(adam) [11].

5. SIMULATION RESULTS

In this section, the implementation of both determin-
istic model and PBNN model are presented. DOAs pre-
diction is modeled as a multi-label classification task [21].
The training, validation, and testing datasets are gener-
ated by using Keras generator [21]. The simulations are
computed by using Python 3 Google compute engine back-
end enabling graphics processing unit (GPU) in Google co-
laboratory notebooks with a mounted drive of a size 12.7
GB. The training step covers different scenarios including
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changing of the angle of separation, number of DoAs, num-
ber of snapshots, SNR etc.

Model uncertainty due to insufficient data availability
for the model to learn effectively, this is already alleviated
by increasing the size of the training data generated by us-
ing Keras data generator, which is based on data augmen-
tation method for better model regularization. Bayesian
neural network (BNN) places a probability distribution on
network weights and gives a built-in regularization effect
making the proposed PBNN model can learn well from
small datasets without overfitting. By introducing a prior,
and posterior probabilities, so it preserves the uncertainty
that reflects the instability of statistical inference of a small
number of instances of evidence dataset. The two proper-
ties sparsity of the recovery method and stability are at
odds of each other, but the variational Bayesian interfer-
ence introduces algorithmically stable model.

5.1. SIMULATION SETTINGS AND NETWORK TRAIN-
ING

Consider co-prime arrays consisting of 10 physical an-
tenna elements, which are designed by taking M = 3, N
= 5. The unit spacing d is chosen to be a half-wavelength.
The covariance matrices are computed by using 256 snap-
shots. The spectrum grid of interest [−15o, 15o] is sampled
using 1o intervals to form 31 spectrum grid units. The
PBNN model and deterministic model are trained using
two-signal sources. The simulated signal sources satisfy the
far-field narrow-band plane wave conditions. The SNRs of
signal sources are generated from a range [−10, 10]dB with
an 1dB interval.

The models are trained for 10-epochs with a mini-batch
size of 32, and the samples set is shuffled at every epoch.
The models are fine-tuned using the RMSProp optimizer
[21] with a learning rate of 0.05. The total number of
training dataset and testing dataset samples is 500 and
100 respectively. With 20% validation dataset off training
samples set aside to evaluate the models after each epoch.
The architecture of the deterministic model is illustrated in
Fig. 4. The deterministic model is stacked by the following
Keras layers: Conv1D. BatchNormalization, AveragePool-
ing1D, Flatten, Dropout, and Dense [11].

To build PBNNmodel, the deterministic model is trans-
formed into a probabilistic model as an intermediate step,
by setting the output of the model final layer to a distri-
bution instead of a deterministic tensor. Then this proba-
bilistic model can capture the aleatoric uncertainty on the
target DOAs. This is implemented by an addition of a
probabilistic layer as a final model layer [15]. Next, turn-
ing this probabilistic model into a PBNN model that is
designed to capture aleatoric and epistemic uncertainty by
changing model layers into reparametrization layers [13] as
illustrated in Fig. 4. To further embed an epistemic un-
certainty into the model weights by replacing the Conv1D
and Dense layers of the deterministic model with Con-
volution1DReparameterization and DenseVariational lay-
ers [13] respectively. A visualizations of the deterministic

model and the PBNN model is depicted in Fig. 5, where
it helps to explore the models properties in great detail for
each Keras layer.

These models are trained using the same conditions
for comparison purpose. The loss functions, negative log-
likelihood and RMSE, are used to measure the DOA esti-
mation performance for each model as illustrated in Fig.
6. The PBNN model provides faster convergence at the
early stages and lower training loss values throughout the
whole training procedure. Considering that the number of
trainable variables, and the training time of PBNN model
is smaller than the deterministic model as tabulated in 1.
On the other hand, the floating-point operations (FLOPS)
count is larger for the BPNN model than the DM model.
The training and validation loss curves of PBNN model
are almost very close which reveal that the PBNN model
is well generalized. Clearly, the validation loss curves level
off before 10-epochs. Thus, there is no overfitting in the
training phase of the PBNN model.

The PBNN model consists of only 2-hidden network
layers as illustrated in Fig. 5. Naturally, there exists a
trade-off between quality and Footprint metrics. A higher-
capacity deeper model is more likely to achieve a better
accuracy, but at the cost of model size, latency, etc. On
the other hand, a model with lesser capacity/shallower,
while possibly suitable for deployment, is also likely to be
worse in accuracy. Though, the objective is to develop an
efficient PBNN model for further deployment on spintronic
devices [22].

Next, testing the angular resolution of the trained PBNN
model by incrementally changing the angular separation
between two closely spaced signal sources for an angular
range varying between 1o and 10o per step size 1o is il-
lustrated in Fig.7, It is obvious that the PBNN model in-
deed learned to predict the DOAs, and the PBNN model
shows robustness. As the separation between the sources
increases, the RMSE value increases because the effect of
the radiation pattern especially for the case of a low SNR.
On the other hand, the RMSE at high SNR decreases since
the sources fall within the main beam of the antenna radi-
ation patterns.

Table 1: Performance comparison between deterministic model and
PBNN model.

Parameter Deterministic PBNN
Training Time (s) 1130.0 804.1
Trainable Variables 1,695 1,382
Total Parameter 1,727 1,382
FLOPS 6,455 23,256

Finally, the robustness of the PBNN model, determin-
istic model and SS-MUSIC method is compared through
Monte Carlo (MC) simulations under different SNRs, and
angle separation. First, two 0dB sources with a set of an-
gular separation [1o, ..., 10o] are assumed to impinging onto
the coprime arrays simultaneously. The RMSE as a per-
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(a) Deterministic model.

(b) PBNN model.

Figure 4: Deterministic model and PBNN model architectures.

(a) Deterministic model, (b) PBNN model.

Figure 5: Visualization of the models.

formance metric is used to evaluate the DOA estimation
precision of these three DOA estimation methods as illus-
trated in Fig. 8(a). Then, the two-sources DOAs are fixed
and the snapshot sets to 1024. The RMSEs of these three
DOA estimation methods with respect to varying input
signal SNR = [-15dB, 9dB] are shown in Fig. 8(b). The
RMSEs of the all three DOA estimations methods with
varying number of snapshots = [16, 32, ... ,1024] are illus-
trated in Fig. 8c. The RMSE is expressed as [2]

RMSE =

√√√√ 1

KQ

K∑
k

Q∑
q

||(θ̂k,q − θk)2|| (13)

where θ̂k,q represents the estimated DOA of the k-th

(a) Deterministic model.

(b) PBNN model.

Figure 6: Training and validationlosses versus epoch.

signal source in the q-th MC round, and Q is the total
number of MC simulation rounds. For each simulation
scenario, 200 rounds of MC simulation are conducted.

The RMSE performance of the DOA estimation meth-
ods as a function of the input angle separation, SNR, and
snapshots is compared in Fig. 8 . It is evident that
DOA estimation performance is improved with the increase
of the input SNR and snapshots. The performance of
PBNN model and deterministic model is better than the
SS-MUSIC method counterpart for the three simulations.
With an efficient PBNN model having lower number of
trainable variables compared to the deterministic model
as tabulated in 1, The performance of the DOA estimation
of the PBNN model is better than deterministic model.
It is worth to note that the PBNN method achieves al-
most the same DOA estimation performance as determin-
istic method whilst varying of the snapshot number below
1024. Though, the number of snapshots becomes low and it
would result in perturbation of the covariance matrix, the
resulting DOA estimation performance is still satisfactory.

The proposed PBNN model is a statistical model that
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(a)

(b)

Figure 7: Testing PBNN model by changing the angular separation
θk = [1o, 4o, 9o, 10o] between two DOAs. There corresponding RM-
SEs = [1.0o,0.70o,0.70o,0.88o] with SNR = 0dB

provides a way to update our beliefs or hypotheses about
the DOA estimation based on the new evidence by collect-
ing more snapshots. The RMSE of the PBNN model and
deterministic model has a similar trend and exhibits the
typical saturation behavior, where the RMSE converges
to a constant value when the SNR value is larger than -
6dB rather than keeps decreasing. Thus, the uncertainty
of DOA estimation methods is quantified by using MC
method where MC is categorized as a sampling-based ap-
proach that has widely used for quantification and propa-
gation of uncertainties [23].

Most importantly, probabilistic neural networks give a
built-in regularization effect making the PBNN model is
able to learn well from small datasets without overfitting.
Though, Bayesian estimation is computationally very ex-
pensive since it greatly widens the parameter space [15].
The pros and cons must be weighed by the user to de-
termine whether the choice of this neural network type is
appropriate for the application used. Since the weights of
the network are distributions instead of single values, more
data is required to accurately estimate the weights.

6. CONCLUSIONS

The paper presents an efficient PBNN-based sparse sig-
nal recovery method for DOA estimation with co-prime
arrays. The PBNN-DOA follows a coarse-refinement pro-
cedure, it first reconstructs the array output to recover

(a) RMSE performance versus angle separation with SNR=0dB.

(b) RMSE performance versus SNR with snapshots = 1024.

(b) RMSE performance versus snapshots with SNR=0dB.

Figure 8: RMSE performance comparison with two incident sources.

the signal components on a discrete spatial grid without
any prior signal information about their number or DOA
preestimates, and the peaks in the reconstructed spectrum
indicate the coarse signal locations. Then refined DOA
estimates are obtained based on the reconstruction result
via sparse Bayesian learning, which is more robust and effi-
cient. The DOA estimation based PBNN accounts for the
modeling of data and model uncertainty. A convolutional
neural network (CNN) is combined with probabilistic lay-
ers to learn the mapping from the pseudo-spectrum to the
spatial spectrum. The input processing fully maintains
the DOF and resolution of the virtual array. The PBNN
model can achieve faster convergence at the early train-
ing stages and lower training losses. Moreover, the PBNN
model adapts well to small angular separation, Simulation
results demonstrate that the performance advantages of
the PBNN model over deterministic model and SS-MUSIC
method according to multiple evaluation metrics. DOAs
coarse refinement is obtained by balancing the accuracy
and efficiency of parameter estimation using the varia-
tional Bayesian-based DOA estimation method. With this
PBNN model, the possibility of misclassification is mini-
mized. Thus, this proposed DOA estimation method can
achieve spectrum autocalibration under non-ideal condi-
tions for the co-prime arrays. In the future, the goal is
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to develop the PBNN model for real-time scenario with
limited computational resources such as embedded ML de-
ployed on a hardware accelerator.
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