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Abstract
Liver image segmentation presents a challenging set of conditions and is
an active area of research. In this paper, we compare the effectiveness of
five different feature vectors used in a preprocessing step for a graph cut-
based semi-automatic liver segmentation algorithm. The feature vectors
tested are formed using a median filter, averaging filter, Gaussian filter,
neighborhood, and novel use of time series data. When compared to
the expert-provided ground truth, the time series approach outperforms
the others and yields results comparable to other recent models in the
literature, giving a mean volume error (VOE) of 32.9 percent, mean Dice
similarity coefficient (DSC) of 0.8, and mean runtime of 74 seconds. We
also include a modified boundary term in the energy functional and nor-
malize both terms in order to avoid further scaling of the boundary term.
In place of a training process, we utilize sample Regions of Interest pro-
vided by expert radiologists to compute sample vector means for healthy
and tumor tissues that are used in the regional term of the functional.
Contribution: The time series feature vector method represents a novel
approach that utilizes the time series data obtained from a sequence
of 59 CT scans as a preprocessing step, along with using a simplified
boundary term in the energy functional.
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1. INTRODUCTION

With the number of cases of liver cancer on the rise, re-
searchers are continuing to look for innovative, non-invasive,
and accurate time-saving strategies to assist in the detec-
tion and treatment of the disease. Whether determining
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tumor locations for surgical removal or measuring the re-
sponse of tumors to a chemotherapy regiment, detecting
the presence of tumors or tracking their growth is crit-
ical for effective treatment plans and increased survival
rates. Even with the advent of advanced medical imaging
techniques, such as CT scans or MRI’s, radiologists have
tended to rely on manual tracing of tumors. However, not
only is this process very time-consuming, there is also a
significant degree of variation between experts and even
between segmentations performed by the same expert on
different occasions. This leads to a lack of reproducibility
in the process as a whole [1].

For this reason, researchers in the fields of computer vi-
sion and image analysis have worked to develop a wide vari-
ety of different techniques to assist in the process of liver tu-
mor detection, from interactive methods that require clini-
cians to be highly involved in the process to semi-automatic
and fully automatic segmentation techniques that rely, in
the latter case, completely on segmentation algorithms.
CT scans are currently the standard method used for liver
tumor detection in the field due to their relatively low ex-
pense and imaging time and high resolution. However,
there are still many challenges that make this problem a
difficult one and prompt researchers to continue to develop
improved methods to overcome them. For example, CT im-
ages may still exhibit a high degree of variation depending
on the type and stage of tumor being scanned, the amount
of contrast agent used in the patient, and even the delay
involved with each scan. Moreover, the computer-assisted
segmentation process for liver tumors is made more compli-
cated due to 1) a lack of well-defined boundaries in many
cases; 2) the lack of a “template” shape for the tumors;
and 3) the low-contrast nature of the tumors and their
surrounding tissues [2].

2. RELATED WORKS

Graph cuts [3], [4] are a popular and versatile image
segmentation technique. Strengths of this technique in-
clude the fact that they are independent of initializations,
unlike the active contour method, and instead of being
iterative, they most often calculate a global energy min-
imization. The theoretical basis upon which graph cuts
depend is that of combinatorial optimization. Therefore
the main goal is to find the minimum of a given energy
functional by executing the lowest-cost graph cut that will
divide an undirected, connected graph into two separate
pieces that are disconnected. We most often represent our
graph using pixels for vertices and derive the edges of the
graph using 4- or 8-neighborhood connectivity. We then
add a node for the source and another node for the sink
along with edges that connect each pixel to each of these
nodes.

Incorporated into our energy functional are both a data
fidelity term, which is regional, and a perimeter regular-
ization term, which represents the boundary. The data

fidelity term has a cost associated with it involving the
classification of pixels over particular regions, such as the
foreground or the background. On the other hand, the
perimeter regularization term has a cost that involves the
differences in pixels on various boundaries, and the key
point to make in this case is that the penalty is applied
only to those edges where we make cuts. In this way, we
obtain a minimization using the max-flow min-cut theorem
[5], which states that the weight of the edges in the cut of
minimum capacity in a flow network equals the maximal
flow that can travel along the network. Here, the cut of
minimum capacity refers to the minimum weight associ-
ated with all the edges that would need to be removed in
order to have our source disconnected from our sink in the
graph.

In the proposed model, we employ the Boykov-Kolmogorov
(BK) max-flow algorithm [6], which is a very common al-
gorithm for running graph cuts. The notable issue that
arises from using un-modified graph cuts involves the chal-
lenges that weakly defined boundaries and noise in images
pose; therefore, many researchers have included additional
methods to address these issues, such as the random walk-
ers algorithm [7]. Another noteworthy example can be
found in [2], which utilizes a four-step process including
a kernelized fuzzy c-means (FCM), confidence connected
region growing algorithm, and graph cut. In [8], kernel
density estimation is used to develop a nonlinear statisti-
cal shape prior in such a way that the energy functional
can be minimized through iterative graph cuts.

3. PROPOSED METHOD

The focus of this paper is to compare the effectiveness of
several different feature vectors used at the preprocessing
step in conjunction with the BK algorithm for perform-
ing a semi-automatic liver segmentation. While the BK
algorithm is relatively simple to implement computation-
ally, these feature vectors are desirable for their ability to
improve the graph cut’s ability to handle noise and am-
biguous boundaries in the tumor. Our contribution here
is that one of these feature vectors represents a novel ap-
proach that utilizes the time series data obtained from a
sequence of 59 CT scans taken 0.5 seconds apart. It out-
performs the other methods tested and yields results that
are comparable with other models in the literature in terms
of effectiveness, as shown in Table 1 and Table 2, respec-
tively. Another contribution is that we also incorporate a
simplified boundary term and a normalization step in the
energy functional used in the graph cut below, the latter
of which allows us to fix λ to one.

We evaluated the feature vectors and the associated
segmentation method using a dataset of six liver tumors
contained in 2D CT images taken at the M.D. Anderson
Cancer Center at the University of Texas. We used ground
truth segmentations provided from expert radiologists for
comparison, and the training data used consisted of Re-
gions of Interest (ROI’s) from which we collected sample
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means for healthy and tumor tissues. These were then
used in the energy functional defined below. For each pa-
tient, a total of 59 images (with 512 × 512 resolution)
were taken 0.5 sec apart with a pixel spacing of 0.70 mm
or 0.86 mm and slice thickness of 5 mm. We used the 59th
image in each sequence for the segmentation. All compu-
tations were performed using Matlab 2018a on a personal
computer with 4 Gb of RAM and a 2.5 GHz Intel Core i5
CPU.

3.1. Preprocessing: Feature Vectors

We “vectorize” each pixel p in the image in the following
ways.

3.1.1. Median Filter

We create a multiscale descriptor by forming a feature
vector, with ten entries, using a median filter over a k × k
neighborhood of p, where k = 1, 2, . . . , 10.

3.1.2. Averaging Filter

We create a second multiscale descriptor by taking the
anisotropic average around each pixel at different length
scales. That is, each entry in our 10-vector for pixel p
is the result of applying an averaging filter over a k × k
neighborhood of p, where k = 1, 2, . . . , 10.

3.1.3. Gaussian Filter

Similarly, we form a feature vector by using a lowpass
Gaussian filter over a k × k neighborhood of p, where k =
1, 2, . . . , 10.

3.1.4. Neighborhood

This feature vector consists of the eight entries not
equal to p of a 3× 3 neighborhood of p.

3.1.5. Time Series

We form this feature vector by letting each pixel in our
image be represented with a 59-vector whose entries are
the pixel’s intensities (in Hounsfield units) at each step of
the sequence of 59 images. Thus for a pixel p, we have

p −→ (p1, p2, p3, . . . , p59). (1)

We use the time series data to develop a feature vector
because it yields the advantage of using the available data
in a way that incorporates the temporal information re-
garding the healthy and tumor tissue intensity differences
along with the spatial information in the initial image.
These differences over time arise primarily due to the differ-
ent way in which the contrast agent is processed in healthy
versus tumor tissues. We do this without smoothing the
images so that we preserve the time series intensity values
for each pixel. We did not perform registration or motion
correction on the series.

3.2. Segmentation

Graph cuts work by finding the minimizer of an energy
functional in which the “cheapest” cut is sought that forms
a disconnected graph from an initial connected, undirected
graph formed in the following way. Pixels in the image
become nodes in the graph and the edges are formed using
4- or 8- connectivity neighborhoods. By adding a source
and sink to the graph, we may form edges between each
node and these two points. The functional to minimize
contains a term that is calculated depending on whether
pixels are classified in the foreground or background, and
hence is known as a regional term. The second term is
computed by adding up the “cost” of any edges where cuts
are made and thus is known as a boundary term.

The energy functional we want to minimize is given by

F (L) =
∑
i

||Ii − µLi
||2 (2)

+ λ

 ∑
{i,j |Li 6=Lj ,

i,j are neighbors}

min{||Ii − Ij ||−12 , 1}

 ,

where Ii denotes the ith vectorized pixel with label Li =
1, 2 with sample tissue mean µ1 or µ2, respectively. L is a
particular segmentation, and “neighbors” are defined via
4-connectivity. We set λ equal to one and incorporate a
normalizing feature for both terms, as described below.

Loosely speaking, the first term represents the 2-norm
of the difference between each vectorized pixel p and the
sample tissue mean for the region it is classified in. These
sample means are derived from the ROI’s provided in the
training data from expert radiologists.

In the second term, we use a simplified variant of a
standard way [9] of determining the “cost” of each cut:

min{||Ii − Ij ||−12 , 1}.

This allows for two neighboring (vectorized) pixels whose
2-norm of their difference is large to have a smaller cost
for cutting the edge between them. This encourages cuts
along ground truth boundaries and discourages them else-
where. However, we want to avoid making the boundary
term significantly smaller than the regional term and al-
lowing for too many cuts that are not along ground truth
boundaries. Therefore, we normalize each term in F (L)
above so that each term in each summation is between
zero and one. This allows us to fix λ equal to one without
the need for further scaling.

3.3. Segmentation Algorithm

input: Image, matrix M of vectorized pixels formed using
one of the feature vectors, and ROI’s for healthy and tu-
mor sample means.
output: Segmented image
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Figure 1: Segmentation for Patient 1 using a time series feature vec-
tor.

Figure 2: Ground truth segmentation for Patient 1 corresponding to
Fig.’s 1, 3, and 4.

1. Load ROI’s and compute tissue mean vectors using
M .

2. Generate 4-connectivity matrix B from M .

3. Generate edge weight matrix from B.

4. Generate terminal weight matrix from M .

5. Run BK graph cut algorithm.

6. Apply pre-made liver mask to image.

7. Apply color map and reshape.

3.4. Statistical Evaluation

In order to evaluate and compare the effectiveness of
the segmenter performance using each of the feature

Figure 3: Segmentation for Patient 1 using an averaging filter feature
vector.

Figure 4: Segmentation for Patient 1 using a Gaussian filter, median
filter, or a neighborhood feature vector. That is, all three filters yield
the same segmentation results.

vectors above, we computed the following statistics based
on [10].

We now give the definitions of each performance metric
used below to evaluate the model.

Volumetric Overlap Error

In order to compute the volumetric overlap error (VOE),
we take the total quantity of the pixels contained in the
intersection of our tumor (S) after segmentation and our
ground truth (T) and divide by the overall quantity con-
tained in the union of these. If the tumor is segmented
perfectly, then the VOE will be 0.

12
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Figure 5: Segmentation for Patient 2 using a time series feature vec-
tor.

Figure 6: Ground truth segmentation for Patient 2 corresponding to
Fig. 5.

V OE (%) =

(
1− |S ∩ T |
|S ∪ T |

)
× 100 (3)

Dice Similarity Coefficient

In order to gauge how well the segmentation has per-
formed overall, we use the Dice similarity coefficient (DSC).
In the case that we have a tumor segmented perfectly, the
DSC will be 1.

DSC =
2|S ∩ T |
|S|+ |T |

(4)

Figure 7: Segmentation for Patient 3 using a time series feature vec-
tor.

Figure 8: Ground truth segmentation for Patient 3.

4. Results

We first present the mean VOE and DSC scores along
with the mean run-time in Table 1 below for each fea-
ture vector segmentation on the dataset of six tumors de-
scribed above along with a comparison of several other re-
cent models in the literature as shown in Table 2. Next, we
include segmented images for different feature vector seg-
mentations using the method outlined above along with
the ground truth segmentation. Yellow represents tumor
tissue. The first four figures all correspond to Patient 1.
Fig. 1 results from the time series feature vector method
and Fig. 2 shows the ground truth for Patient 1. Fig. 3
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Figure 9: Segmentation for Patient 3 using an averaging filter feature
vector.

Figure 10: Segmentation for Patient 3 using a Gaussian filter feature
vector.

corresponds to the averaging filter feature vector. Fig. 4
corresponds to the Gaussian filter feature vector. Note
that the segmentations using the Gaussian filter, median
filter, and neighborhood-based feature vectors are nearly
identical for this patient.

The next images highlight the time series feature vector
segmentation approach for two additional patients. Fig. 5
corresponds to the time series feature vector for Patient 2,
and Fig. 6 shows the ground truth for this patient. Then we
have the time series feature vector for Patient 3 in Fig. 7,
with the ground truth for Patient 3 shown in Fig. 8, the
averaging filter feature vector in Fig. 9, the Gaussian filter

Figure 11: Segmentation for Patient 3 using a neighborhood feature
vector.

Figure 12: Segmentation for Patient 3 using a median filter feature
vector.

feature vector in Fig. 10, the neighborhood feature vector
in Fig. 11, and the median filter feature vector in Fig. 12.

From the first table, we see that the method using the
time series feature vector outperforms the others in this
case and obtains a mean VOE of 32.9%, mean DSC of 0.8,
and mean runtime of 74 seconds. These results using the
time series graph cut method are comparable to other re-
cent results in the literature, as shown in Table 2. We
observe that the averaging filter feature vector is the worst
performing, with a mean VOE of 46.6%, DSC of 0.65, and
mean runtime of 83 seconds. On the other hand, the Gaus-
sian filter, median filter, and neighborhood-based feature
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Table 1: Feature Vector Comparison.

Method
Statistical Measures Reported as Averages

VOE (%) DSC Run-time (sec.)
Median 40.8 .73 60
Averaging 46.6 .65 83
Gaussian 40.0 .74 91
Neighborhood 40.1 .74 45
Time Series 32.9 .80 74

Table 2: Model Comparison.

Model
Statistical Measures Reported as Averages

VOE (%) DSC Run-time (sec.)
Ronneberger et al. [11], 2015 39.0 .73 n/a
Moghbel et al. [7], 2016 22.8 .75 30
Wu et al. [2], 2017 29.0 .83 45
Zeng et al. [12], 2018 33.9 .73 n/a
Gruber et al. [13], 2019 21.8 n/a n/a
Proposed Method 32.9 .80 74

vectors are all remarkably similar with a mean VOE of ap-
proximately 40% and DSC of approximately 0.74. Their
runtimes are 91, 60, and 45 seconds, respectively. This
similarity is likely due to the fact that all of these methods
utilize information contained in the neighborhood of each
pixel p in the image to form the feature vector for the pre-
processing step, whereas the time series approach utilizes
changes in each pixel’s intensity over time.

In summary, the contributions of this paper are 1) We
compare various feature vectors for use with the BK graph
cut algorithm. 2) We find that the proposed time series
method outperforms the others (Table 1) and achieves re-
sults comparable to other models in the literature (Table
2). 3) We incorporate a modified boundary term in the en-
ergy functional together with a normalization that scales
both terms and removes the need for optimizing λ.

5. CONCLUSIONS

In this paper, we evaluate the effectiveness of five differ-
ent feature vectors used as a preprocessing step in a semi-
automatic graph-cut based liver segmentation method. A
novel use of time series data to develop a feature vector
provides the most effective method of those tested and
achieves results comparable with other recent models in
the literature. We also make use of a modified boundary
cost term and normalize the regional and boundary terms
in the energy functional. Sample ROI’s are provided by
expert radiologists, and we use these regions to compute
sample means for the healthy and tumor tissues that are
used to compute the regional term in the functional. The
method using the time series data provides a relatively high
degree of accuracy for a short runtime and an algorithm

that is simple to implement computationally with no ad-
ditional training process. Further testing and refinement
using the time series method would be beneficial given the
promising preliminary results from this study.
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