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Abstract
Robust object detection require fine details to represent object structure
and high-level semantic knowledge extracted from deep feature maps.
Besides, contextual information is also important for exact location of
multiple scale objects. However, it is difficult to meet these demands si-
multaneously in the top-down CNN structure. In this work, we present
the Multi-Level Feature and Context Pyramid Network (MLFCP Net) to
tackle this problem. The proposed MLFCP Net consist of two main mod-
ules. To utilize advantages of multiple level features, the Multi-level Fea-
ture Fusion (MFF) module combines different layer feature maps to form
enhanced multi-level features. The Context Pooling Aggregation module
combines local and global context features to further improve detection
accuracy. Our method achieves 84.9% mAP on PASCAL VOC2007 test
at 16.7FPS with 320×320 input and 42.5% AP on MS COCO. Experi-
mental results demonstrate effectiveness of the proposed feature fusion
method and the context aggregation scheme.
Contribution of the Paper: we propose a novel Multi-Level Feature
and Context Pyramid Network (MLFCP Net).
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1. INTRODUCTION

Multi-scale object detection is a difficult and funda-
mental task in the field of computer vision. Due to the fast
development of convolutional neural networks (CNNs), sig-
nificant progress has been made towards improving object
detection performance. Some works on object detection
[1, 2] and semantic segmentation [3, 4] have shown that
prediction from high-level feature maps only may lead to
lower accuracy. While deep features provide rich seman-
tic information, the top-down CNN structure suffers fine-
level object information loss. The problem becomes more
serious in practice due to scale variation across object in-
stances.

The feature pyramid network has been widely used
to utilize advantages of multiple level features [5]. Fea-
ture pyramid-based object detectors integrate different lay-
er features using the lateral connections between bottom-
up and top-down layers. The reverse connection intro-
duced in [6] combines upsampled high-level feature maps
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with low-level features to improve multi-scale object detec-
tion performance. In the proposed RON network, large-
scale objects are detected using deep layer feature maps
and shallow layer feature maps are mainly used to locate
small objects. The RefineDet with two inter-connected
modules uses variable-size anchors to determine object po-
sitions and combines low-level information with high-level
semantic features [7]. The MDSSD [8] and DFP [9] al-
so utilize high-level semantic features with low-level object
information. These methods indicate that the lower-level
and upper-level features are complementary and their com-
bination is necessary for object detection.

Recently, some object detection and semantic segmen-
tation approaches explore the usage of context information
for improving detection and segmentation performance [2,
10, 11, 12]. The DSSD adopts deconvolutional operators
to construct an encoder-decoder structure for extracting
additional context information [12]. The dilated convolu-
tion is also widely used to incorporate multi-scale context
information [13]. The contrast prior and fluid pyramid in-
tegration method introduce a contrast enhanced network
to improve depth information [11]. The enhanced depth
maps are then used as a global context clue for salient ob-
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Figure 1: An overview of the proposed network. (a)Overview of the MLFCP Network. FFM: feature fusion module. FAM: feature attention
module. FR layer: feature refinement layer. SMD: Shallow, medium and depth features. (b) Feature Refinement Layer (FR layer). (c)Feature
Attention Module (FAM). (three pyramid level is shown in context pooling aggregation module for simplicity; actual pyramid level is four)

ject detection. In [14], context information outside regions
of interesting is integrated by using the spatial recurrent
neural network. These works illustrate that utilizing con-
text information makes the final prediction more reliable.
Although these methods achieve better object detection
with the help of context information, the major issue of
these models is lack of suitable strategy to integrate glob-
al and local context information with the top-down CN-
N structure. In general, deep layer features correspond
to global context clues, which are important for the large
object recognition. On the other hand, local context in-
formation can be extracted from low level features, which
facilitates exact location of different size objects.

Motivated by these works, we propose a new network
structure, the Multi-level Feature and Context Pyramid
Network to alleviate these problems. The MLFCP Net
consists of two main stages. In the first stage, the Multi-
level Feature Fusion (MFF) module integrates different lev-
el feature maps to enhance multiple level features (the S-
MD features). To better utilize the local and global con-
text information, a Context Pooling Aggregation (CPA)
module is proposed in the second stage. The CPA mod-
ule collects multi-scale context information using pyramid
pooling. The context information is further combined with
SMD features to improve object detection performance.
The overall framework is shown in Figure 1(a). The main
contributions of this paper are summarized as follows:

• We propose the multi-level feature and context pyra-
mid network that aggregates different level features
to improve detection performance. The new mod-
el enhances network representation ability for both
fine-level features and object-level semantic features.

• A multi-scale context pooling aggregation module is
developed to tackle the problem of missing contex-
t information in the top-down CNN structure. The

CPA module combines local and global context fea-
tures under different pyramid scales.

2. RELATED WORKS

CNNs based object detection. Because of the pow-
erful feature representation ability, deep convolutional neu-
ral networks have been successfully applied to various com-
puter vision applications, such as image classification [15]
and semantic segmentation [3, 4]. In the past decade, C-
NNs have also been widely adopted in object detection. To
utilize different level features, some detectors make predic-
tions on multi-scale features [10, 11, 14, 16]. The Trident
Net generates scale-specific features through multiple par-
allel branches [10]. The dilated convolution is employed in
the multi-branch architecture with different dilation rates
to adapt the receptive fields for multiple scale objects. The
single-shot detector introduced in [17] adopts the feature
pyramid to yield reliable prediction. The SSD uses mul-
tiple scale features to predict class scores and bounding
boxes regression. In [18], the RetinaNet also uses a fea-
ture pyramid network as backbone model. A new focal loss
is introduced to address the foreground-background class
imbalance problem. In [19], multi-resolution prediction
maps are densely connected to achieve deeply supervised
object detectors.

Multiple layer feature fusion. Some approaches
combine multi-layer feature maps to make better use of dif-
ferent level features [8, 9, 19, 20]. The multi-scale deconvo-
lutional single shot detector integrates high-level features
with low-level details using a deconvolution fusion block.
The method adds semantic information to the low-level de-
tails to generate features with strong representational pow-
er for small object instances [8]. The NAS-FPN, which is
discovered by using a neural architecture search algorithm,
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consists of a combination of top-down and bottom-up con-
nections to fuse different scale features so that it has high
resolution and rich semantic information [20]. In [14], the
ION concatenates low-level and high-level features from d-
ifferent layers to generate better feature maps for object
prediction. In the DSSD, several deconvolutional layers
are added to the top of SSD network to up-sample feature
maps [12]. These feature maps are then combined with
different scale feature maps to improve detection accuracy.
The PANet [21] adds an extra bottom-up path augmen-
tation on FPN structure to enhance feature pyramid. The
new framework strengthens network localization capability
by propagating spatial features from the low level to top
level feature maps.

Object detection with context Information. Ob-
ject detection not only relies on fine-level features and
object-level semantic clues, but also requires context in-
formation to make reliable prediction. The dilated con-
volution is a common method to generate context infor-
mation. In [13], dilated convolution is adopted to aggre-
gate multi-scale context information. Methods proposed
in [16, 21, 22] extract context information with different
resolutions from multiple regions. For example, the Global
pooling is used in PSP Net [16] to generate global con-
text clues for semantic segmentation and the DFANet [22]
combines features of different stages in a cross-level feature
aggregation structure to incorporate multi-level context.
The DSSD network appends deconvolutional layers to SS-
D model to generate additional context information [12].
The enriched feature guided refinement network [23] intro-
duce a feature enrichment scheme to produce multi-scale
context features to implement object detection.

3. MULTI-LEVEL FEATURE AND CON-
TEXT PYRAMID NETWORK

We introduce a multi-level feature and context pyra-
mid network for multi-scale object detection. The pro-
posed MLFCP network has two main parts, the multi-level
feature fusion module and the context pooling aggregation
module. The feature fusion module provides combined fea-
tures by aggregating fine-level features and object-level se-
mantic features. The context pooling aggregation module
integrates different scales context information to facilitate
exact location of objects in complex scene. The method
introduces an efficient scheme to integrate multiple level
semantic and context information with the top-down CNN
structure. It is worth to note that not only multi-scale ob-
ject detection, other computer vision applications, such as
semantic segmentation, can also benefit from the proposed
architecture.

3.1. Multi-level Feature Fusion Module

Most widely used CNNs provide feature maps with
large receptive field for object-level information. However,

Figure 2: Overview of the multi-level feature fusion module. FCL:
feature combination layer. SFB: shallow feature block, MFB: medium
feature block, DFB: deep feature block.

both fine-level spatial information and object-level seman-
tic information are necessary for object detection applica-
tions. Recently, lots of object detection approaches have
been developed to fuse multiple level features in the top-
down structure. Some detectors encode spatial information
with dilated convolution method [2, 10]. The U-shape
structure is also widely utilized, in which deep features are
combined with features of shallow layers to increase spatial
details [24].

Motivated by these works, we propose the multi-level
feature fusion module to enhance network capability for
both fine-level features and object-level semantic features.
Figure 2 illustrates the MFF module structure. In the fea-
ture fusion module, we apply a feature combination layer
to integrate features of multiple layers. In each feature
combination layer, shallow features are down-sampled to
match the size of deep features. The output of MFF mod-
ules consists of shallow feature block, medium feature block
and deep feature block.

The structure of feature combination layer is shown in
Figure 3. Instead of feature summation, we adopt concate-
nation to combine features of different layers. As input
feature maps of the feature combination layer have differ-
ent resolutions, before feature concatenation, larger size
feature maps are down-sampled by using the average pool-
ing to get uniform size feature maps. The shallow feature
block is computed as:

DS = Concat(DS4(conv2 2), DS2(conv3 3), conv4 3) (1)

Fs = ReLU(BN(Conv(DS))) (2)

where Fs is the shallow feature block, DS4 and DS2 are 4×
down-sample and 2× down-sample. We use average pool-
ing with stride 4 and stride 2 to implement down-sampling
for two larger size input feature maps. These resized fea-
ture maps are then concatenated and followed by a 3×3
convolution. The batch normalization and the rectified
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Figure 3: Example of the feature combination layer. Fs: shallow
feature block.

linear unit (ReLU) [25] are utilized for normalization and
activation. The medium feature block and deep feature
block are computed by the same method. The dimensions
of shallow, medium, and deep feature blocks are 512, 512
and 1024, respectively. Finally, all feature blocks and the
conv7 layer feature maps are concatenated to generate the
multi-level feature fusion module features (the SMD fea-
tures).

3.2. Feature Attention Module

The attention mechanism plays an important role in
the process of human perception as we have the ability to
pay more attention to salient regions in a cluttered visual
scene. Recently, the attention mechanism has been suc-
cessfully applied in many computer vision tasks [15, 25].
In [25], Hu proposed a Squeeze and Excitation structure
to adjust output response by modeling the relationship be-
tween channel features.

We utilize a Feature Attention Module to refine the S-
MD features. The dilated convolution is adopted in the
FA module to expand receptive field and gather context
information. Specifically, three dilated convolutions with
different dilation rates are used to expand the receptive
field. Then, dilated features are concatenated and followed
by a convolution layer with batch normalization and the
rectified linear unit. Finally, the sigmoid function is used
to compute attention vector to guide the feature weight
learning. Figure 1(c) shows the structure of the feature
attention module.

3.3. Context Pooling Aggregation Module

Some recent visual recognition works explored the ca-
pability of context information in object detection and se-
mantic segmentation [13, 14]. These works have shown
that utilizing scene context clues make the final prediction
more reliable. To further improve detection performance,
we present a context pooling aggregation module to facil-
itate exact location of objects in complex scene (For con-
venience, we refer the module as context pyramid module

for short). As combination of multiple-scale feature maps
is a common approach for collecting context information,
we adopt the spatial pyramid pooling with various sizes of
pooling sub-regions to construct different pyramid scales,
as shown in Figure 1(a).

The context pyramid module fuses feature maps from
four different pyramid layers. Let the weighted SMD fea-
tures have D channels. F={f1, f2, f3 f4} represents feature
maps of different pyramid layers generated by the spatial
pyramid pooling and each of them has D channels. After
a feature refinement layer, feature maps in each pyramid
layer has 1/2D channels. We obtain down-sampled feature
maps in different pyramid layers by successively decreasing
the spatial size by half.

A feature refinement layer is applied in the context
pyramid module to enhance feature maps of different pyra-
mid layer and reduce the channel number. Figure 1(b)
shows the details of feature refinement layer. We adopt
the inception layers to refine features in each pyramid lay-
er. In the inception layer, a 3×3 convolution and a 1×1
convolution are applied in parallel to extract context fea-
tures for each pyramid scale. After feature concatenation,
we use a 1×1 convolution to reduce feature map channels
to 1/2D in each pyramid layer.

To combine local and global context information, we
propose the context fusion method as shown in Fig.1(a).
Specifically, let feature maps in four pyramid scales have s-
patial size of W×H×D, 1/2W×1/2H×D, 1/4W×1/4H×D,
and 1/8W×1/8H×D, where D is the number of feature
channel. After the feature refinement layer, we use feature
maps in the same scale as the primary features and feature
maps in other three scales as the supplementary features
to form a four-level feature pyramid. Then, features in
each level use a 1×1 convolution to reduce the number of
channels to 1/2D. To match the sizes of different level fea-
ture maps, we up-sample the smaller size feature maps via
bilinear interpolation and down-sample larger size feature
maps by using the average pooling.

3.4. Details of the MLFCP Network

We use different aspect ratios 1,2,3,1/3,1/2 for the de-
fault boxes. Thus, at each pyramid layer, we use anchors
at five aspect ratios to cover objects of different sizes. In
the prediction stage, we use a 3×3 convolution layer to re-
fine feature maps firstly. Then, a 3×3 convolution layer is
applied to predict locations of objects and their class label-
s. For the box regression sub-network, a 3×3 Convolution
layer with 4×A filters is applied to each level to calculate
the relative offset between the anchor and the predicted
bounding box, where A is the number of anchors per loca-
tion of the feature maps. Another 3×3 Convolution layer
with (K+1) × A filters is applied to predict the probability
of an object being present at each spatial position for each
of the A anchors and K object classes.
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4. EXPERIMENT

We train and evaluate the proposed MLFCP network
on two datasets: the PASCAL VOC 2007 [26] and the MS
COCO [27].

4.1. PASCAL VOC 2007

We train the MLFCP network on PASCAL VOC 2007
and PASCAL VOC 2012 trainval (16551 images), and test
on VOC 2007 test set (4952 images). The network is pre-
trained on the ILSVRC dataset [28]. We train MLFCP
network for 120k iterations with an initial learning rate of
10−3. The learning rate changes to 10−4 at 80k iterations
and 10−5 at 100k iterations. We use the SGD with a mini-
batch size of 10 and 8 for MLFCP network with 320×320
input images and 512×512 input images, respectively. We
use a momentum of 0.9 and 0.0005 weight decay. The e-
valuation metric of this work is the mean average precision
(mAP).

Ablation study of different dilation rates. We
conduct following experiments to verify the effectiveness
of different dilation rates in the feature attention module.
As listed in Table 1, we obtain the best performance when
setting the dilation rates to 1, 2, and 3.

Table 1: Ablation study of different dilation rates. D3 and D5: 3×3
and 5×5 dilated convolutions. (xxx): dilation rates used in dilated
convolutions.

Method mAP(%)
VGG16+D5(123) 81.1
VGG16+D5(234) 80.7
VGG16+D5(134) 80.9
VGG16+D3(123) 81.9
VGG16+D3(234) 81.5
VGG16+D3(134) 81.7

Ablation study of the feature fusion module and
the feature attention module. Experimental results
with and without the feature fusion module and the fea-
ture attention module are shown in Table 2. The context
fusion module is removed in all these experiments for bet-
ter performance comparison. Comparing to the VGG-16
baseline network, utilizing of the feature fusion module in-
creases detection performance by 3.5%. In the next exper-
iment, the Output feature maps of the baseline model are
connected to the feature attention module directly. This
experiment yields 70.6% mAP with 0.6% accuracy drop
compared with the FFM module. It demonstrates the im-
portant of the feature fusion module as some spatial details
are lost in the deep feature maps and only part of them
can be recovered in the post-processing steps. We obtain
the highest performance (72.6%) with the feature fusion
module and the feature attention module. As we can see
from the last experiment, with the help of feature fusion
module, the FAM module increases detection accuracy by
1.4%.

Ablation study of the context pooling aggrega-
tion module

Table 2: Ablation study of the feature fusion module and the feature
attention module.

VGG FFM FAM Parameters(M) mAP(%)√
31 67.7√ √
61 71.2√ √
50 70.6√ √ √
65 72.6

The pyramid levels: Experimental results of using d-
ifferent number of pyramid levels are shown in Table 3.
The proposed MLFCP network achieves the best result of
81.9% mAP with four levels feature pyramid. In the case
of five-layer feature pyramid with 1, 2, 4, 8, 16 pooling
rates, we obtain 81.0% mAP.

Table 3: Experiment result of various pyramid levels.

Pyramid levels
3 4 5

mAP(%) 80.3 81.9 81.0

Feature refinement layer and context fusion met-
hod: Table 4 illustrates results of experiments with and
without the feature refinement layer and the context fu-
sion method. To verify the effectiveness of various pooling
method, the avg-pooling and max-pooling are used sepa-
rately in the context fusion method. In the first experiment
(the second row of Table 4), output feature maps of the
feature refinement layer are used directly in the prediction
stage. As listed in Table 4, without the context pooling
aggregation module, the multi-level feature fusion module
yields 72.6% mAP. Detection performance is improved to
74.2% by using the pyramid pooling and the feature re-
finement layer. The proposed context fusion method fur-
ther improves performance to 78.9% (with max-pooling)
and 79.7% (with avg-pooling). In these experiments, we
observe that the avg-pooling has better performance than
the max-pooling. In the last two experiments, utilizing of
the feature refinement layer and the context fusion method
with avg-pooling achieves the best performance of 81.9%,
about 9.3% improvement compared to the first experimen-
t. These experiments indicate that multiple scale context
information is necessary for object detection.

Experiments on PASCAL VOC 2007. Table 5
shows experimental results of the proposed MLFCP net-
work and state-of-the-art on PASCAL VOC 2007 dataset.
The MLFCP network achieves 81.9% mAP when using
320×320 input images. Detection performance is further
increased to 83.2% with 512×512 input images. The pro-
posed method outperforms other detectors using input im-

Table 4: Performance comparisons of the feature refinement lever
(FR) and the Context Fusion Method (CFM). Avg:Avg-Pooling.
Max:Max-Pooling.

SMD
features

CFM+
Avg

CFM+
Max

FR Parameter
(M)

mAP(%)

√
73 72.6√ √
111 74.2√ √
109 78.9√ √
109 79.7√ √ √
113 80.5√ √ √
113 81.9
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Table 5: Experiment results on PASCAL VOC 2007 with PASCAL VOC 2007 trainval and PASCAL VOC 2012 trainval as the training
set,PASCAL VOC 2007 test as the test set.

Method Backbone GPU /Number Input size Speed (FPS) mAP 2007(%)
ION [14] VGG-16 K40 /- ∼1000×600 1.3 79.2
DSOD [19] DS/64-192-48-1 Tian X/1 300×300 17.4 77.7
RON320 [6] VGG-16 Tian X/1 320×320 15 71.7
SSD300 [17] VGG-16 Tian X /1 300×300 46 77.5
SSD512 [17] VGG-16 Tian X /1 512×512 19 79.8
DSSD321 [12] ResNet-101 Tian X /1 321×321 9.5 78.6
DSSD513 [12] ResNet-101 Tian X /1 513×513 5.5 81.5
RefineDet320 [7] VGG-16 Tian X /1 320×320 40.3 80.0
RefineDet512 [7] VGG-16 Tian X /1 512×512 24.1 81.8
RefineDet320+ [7] VGG-16 Tian X /1 - - 83.1
RefineDet512+ [7] VGG-16 Tian X /1 - - 83.8
MDSSD300 [8] VGG-16 1080Ti /1 300×300 38.5 78.6
MDSSD512 [8] VGG-16 1080Ti /1 512×512 17.3 80.3
EFGRNet320 [23] VGG-16 Tian XP/1 320×320 - 81.4
EFGRNet512 [23] VGG-16 Tian XP/1 512×512 - 82.7
PFPNet-R320 [29] VGG-16 Tian X /1 320×320 33 80.7
PFPNet-R512 [29] VGG-16 Tian X /1 512×512 24 82.3
PFPNet-R320+ [29] VGG-16 Tian X /1 - - 83.5
PFPNet-R512+ [29] VGG-16 Tian X /1 - - 84.1
MLFCP320 VGG-16 1080Ti /1 320×320 16.7 81.9
MLFCP512 VGG-16 1080Ti /1 512×512 10.1 83.2
MLFCP320+ VGG-16 1080Ti /1 - - 83.9
MLFCP512+ VGG-16 1080Ti /1 - - 84.9

ages of the same size. To reduce the impact of various input
sizes for a fair comparison, we conduct multi-scale testing
with different sizes input images. As shown in Table 5, the
MLFCP320+ and MLFCP512+ achieve 83.9% mAP and
84.9% mAP, respectively. The proposed method exhibits
the best mAP among other detectors with the same multi-
scale input images, such as PFPNet-R512+ and RefineDe-
t512+. The PFPNet utilizes pyramid pooling to extract
context information from the output features of base net-
work. Different from the PFPNet, in our method, multiple
level features are integrated into shallow, medium and deep
features (the SMD features) firstly. The SMD features are
further enhanced by using the attention module. Finally,
context information is extracted from the enhanced multi-
level SMD features.

4.2. MS COCO

To further validate our model, we conduct experiments
using the MS COCO dataset with 320×320 images (MLF-
CP320) and 512×512 images (MLFCP512). we use the
trainval (123187 images) for training and evaluate the re-
sults on the standard test-dev2015 split (20288 images).
The performance evaluation metric for the COCO dataset
is slightly different from that of the VOC dataset. The
average precision over different IoU thresholds from 0.5 to
0.95 (AP50:95) is adopted to report overall performance.
The APs with IoU thresholds of 0.5 and 0.75 are denoted
as AP50 and AP75, respectively. The batch size is set to 10
for 320×320 input images and 8 for 512×512 input images.
We train the model with an initial learning rate of 10−3

for the first 160k iterations, and then decreasing it to 10−4

and 10−5 for the next 120k and 40k iterations. The total
number of training iterations is 320k. Other settings are
the same as PASCAL VOC dataset.

As shown in Table 6, MLFCP320 has the APs of 33.0%,
which outperforms most VGG-16-based detectors using in-
put images with 320×320 pixels. For the input size of
512×512, Our MLFCP512 model achieves 37.1% accuracy,
outperforms other hourglass models, such as RetinaNet500,
DSSD513, and RefineDet512. The proposed MLFCP512
shows the result similar to M2Det512, which uses multi-
ple U-shape networks to collect multi-level features. We
also employed the multi-scale testing on the MS COCO
dataset. The MLFCP320+ obtains 38.3% accuracy and
the MLFCP512+ shows 42.5% accuracy. Our model achieves
similar result to M2Det512+ and better than other state-
of-the-art works. For example, MLFCP512+ outperforms
the RefineDet512+ which adopts the ResNet-101 as base-
line model. The M2Det utilizes decoder layers of each U-
shape module as the features for detecting objects. Differ-
ent from the M2Det, in our method, multiple scale context
features are used to detect objects.

4.3. From MS COCO to PASCAL VOC

Generally, deep convolutional neural networks achieve
better accuracy with large-scale training data. In this ex-
periment, we explore the contribution of large-scale train-
ing data on object detection. The MLFCP model is pre-
trained by using MS COCO datasets and fine-tuned us-
ing VOC07+12 dataset and MS COCO dataset. The net-
work is tested on the PASCAL VOC 2007 test data set.
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Table 6: Tests the structure using test-dev 2015.

Method Train Data network
Average Precision(%)

AP50 AP75 AP50:95

ION [14] train VGG-16 55.7 34.6 33.1
SSD300 [17] trainval35k VGG-16 43.1 25.8 25.1
SSD500 [17] trainval35k VGG-16 48.5 30.3 28.8
RON320 [6] trainval VGG-16 47.5 25.9 26.2
RON384 [6] trainval VGG-16 49.5 27.1 27.4
MDSSD300 [8] trainval35k VGG-16 46.0 27.7 26.8
MDSSD512 [8] trainval35k VGG-16 50.5 31.4 30.1
PFPNet320+ [29] trainval35k VGG-16 60.0 40.7 37.8
PFPNet512+ [29] trainval35k VGG-16 61.5 42.6 39.4
RefineDet320+ [7] trainval35k VGG-16 56.1 37.7 35.2
RefineDet512+ [7] trainval35k VGG-16 58.7 40.8 37.6
RetinaNet400 [18] trainval35k Residual-50 47.8 32.7 30.5
RetinaNet400+ [18] trainval35k Residual-101 49.5 34.1 31.9
RetinaNet500 [18] trainval35k Residual-50 50.9 32.5 34.8
RetinaNet500+ [18] trainval35k Residual-101 53.1 36.8 34.4
RetinaNet800 [18] trainval35k Residual-50-FPN 59.1 42.3 39.1
RetinaNet800+ [18] trainval35k Residual-101-FPN 61.1 44.1 40.8
DSSD513 [12] trainval35k Residual-101 53.3 35.2 33.2
RefineDet320+ [7] trainval35k Residual-101 59.9 41.7 38.6
RefineDet512+ [7] trainval35k Residual-101 62.9 45.7 41.8
M2Det320 [30] trainval35k VGG-16 52.4 35.6 33.5
M2Det512 [30] trainval35k VGG-16 56.6 40.5 37.6
M2Det320+ [30] trainval35k VGG-16 59.1 42.4 38.9
M2Det512+ [30] trainval35k VGG-16 62.5 47.2 42.9

MLFCP320 trainval VGG-16 53.6 34.4 33.0
MLFCP512 trainval VGG-16 57.5 39.8 37.1
MLFCP320+ trainval VGG-16 60.4 41.2 38.3
MLFCP512+ trainval VGG-16 62.1 46.5 42.5

Table 7: Detection results on PASCAL VOC test dataset.The model
is Pre-trained using the MS COCO dataset.Using MS COCO and
PASCAL VOC 0712 datasets train this network.

Method Backbone 2007 test (%)

DSOD300 [19] DS/64-192-48-1 81.7
SSD300 [17] VGG-16 81.2
SSD512 [17] VGG-16 83.2
RON320++ [6] VGG-16 80.3
RON384++ [6] VGG-16 81.3
RefineDet320+ [7] VGG-16 85.6
RefineDet512+ [7] VGG-16 85.8

MLFCP320 VGG-16 85.4
MLFCP512 VGG-16 86.7
MLFCP320+ VGG-16 86.9
MLFCP512+ VGG-16 87.5

Table 7 shows the experimental results. The MLFCP320
achieves 85.4% mAP with MS COCO training data. We
observe 3.5% performance improvement compared to the
VOC training set. As the input size increasing to 512×512,
the MLFCP512 has 86.7% mAP, about 1.3% better than
the MLFCP320. We also conduct multi-size testing. The
MLFCP320+ has 86.9% mAP and the MLFCP512+ achieves
87.5% mAP, better than most detectors with the same size
input images.

4.4. Performance Comparison

Table 5 shows the performance comparison of the MLFCP
network and other state-of-the-art models. We evaluate
the inference speed of MLFCP network on a machine with

Figure 4: Examples of MLFCPNet detection results.

a 1080Ti GPU. For input images with size 320×320 and
512×512, the proposed MLFCP network operates at a speed
of 16.7FPS and 10.1FPS, respectively.

Some object detection examples are illustrated in Fig-
ure 4. As shown in the first row, MLFCPNet works well
with a wide range of objects including crowded, overlapped,
small and large objects. Examples in the second row show
that in the case of blur and occlusion, MLFCPNet might
fail to detect objects.

5. CONCLUSIONS

In this paper, a Multi-Level Feature and Context Pyra-
mid Network is proposed to detect multiple scale objects.
The new model has two main stages. In the first stage, it
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applies a feature fusion module to strengthen network rep-
resentation ability for both fine-level features and object-
level semantic features. The feature fusion module pro-
vides combined multiple level features by aggregating dif-
ferent layer feature maps. A context pooling aggregation
module is introduced in the second stage. The contex-
t module integrates local and global context information
to further improve detection performance. Experimental
results on the PASCAL VOC 2007 test and the MS CO-
CO datasets demonstrate superior object detection perfor-
mance of the new framework as compared with state-of-
the-art. Ablation studies further demonstrate the effec-
tiveness of the proposed architecture. In future work, we
plan to implement a real-time MLFCP object detection
system by utilizing a light-weight backbone.
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