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Abstract
In this paper, a new approach to classify ovarian follicles into two classes
is proposed. A smoothing filter is applied for filtering ovarian follicle
images. The smoothing filter is designed to consider speckle patterns
under the resolution of the ultrasound devices Then, for extracting fea-
tures from the filtered ovarian follicle images, two types of convolutional
neural networks are utilized. One is the convolutional autoencoder, and
the other is the layered convolutional neural network. Finally, both fea-
tures extracted by the CNN-AE or the CNN from the filtered ovarian
follicle images and numerical features defined by our previous works are
used for classification. Several types of classifiers are examined in our
experiments. From experimental results, we show the effectiveness of
our proposed method. Especially, when image features extracted by the
CNN and numerical features are both used, we have better classification
performance than the other cases.
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1. INTRODUCTION

Lower birth rate and population aging are serious prob-
lems in Japan as well as other countries [1]. Especially, the
lower birth rate is a pressing issue which should be tackled.
One of the reasons for the lower birth rate is the higher av-
erage marriage age. The late marriage may be a risk for
infertility. In [2], the authors have reported that there were
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about 60% of causes of infertility (about 40 % of cases are
due to female infertility and about 20 % of cases are due to
both male and female infertility) on the female side. Since
it is hard to improve the late marriage, therefore, we need
to tackle the infertility problem to improve the birth rate
in Japan.

In vitro fertilization is a typical medical treatment for
infertility. First, in the treatment of in vitro fertilization,
ova are extracted from the mother’s ovaries and then ex-
tracted ova are fertilized outside of the mother’s body. An
embryo which has the best cell division will be returned
to the mother’s womb [3]. Therefore, in order to per-
form in vitro fertilization, ova have to be extracted from
the mother’s ovary. Presently, ultrasound scanning devices
are used by medical doctors to find ovarian follicles from
ovaries. Since ultrasound scanning is noninvasive, ultra-
sound devices are major tools in medical examinations.
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In ovarian follicle paracentesis operation, all ovarian fol-
licles observed by using ultrasound scanning devices are
extracted by medical doctors. Medical doctors can not
distinguish between ovarian follicles with ova and without
ova (called “vacuole”) on the ultrasound B-mode image
because ova do not appear in ultrasound B-mode image
directly. Thus, all observed follicles are extracted at para-
centesis operations. However, since paracentesis operations
are invasive, subject persons are accompanied by pain from
the operation. If medical doctors can find ovarian follicles
with ova from ultrasound B-mode images, then the med-
ical doctors are able to decide to do the paracentesis op-
eration. Otherwise, unnecessary paracentesis operations
need not do. Therefore, our purpose is to classify ovar-
ian follicles into two classes (i.e., ovarian follicles with ova
or vacuole) from the B-mode images. When ovarian folli-
cles are able to be classified before paracentesis operations
using a computer-aided system, only ovarian follicles with
ova are extracted by paracentesis operations. For example,
let us consider if the patient has many ovarian follicles but
those follicles are vacuoles. Currently, all ovarian follicles
are extracted by paracentesis operations because medical
doctors could not distinguish ovarian follicles with ova and
vacuole, however, they are unnecessary operations. On
the other hand, if medical doctors can find ovarian follicles
with ova before operations, the above mentioned unneces-
sary operations are able to be reduced.

To tackle the problem of infertility, several types of re-
search have been reported [4, 5, 6, 7]. In [4, 5], steno-
sis detection method has been proposed for tubal infer-
tility. By using an ultrasound measurement device, new
features have been defined based on the difference between
the minimum and maximum amplitude values. In [6], a
visualization method has been proposed for measuring the
diameter of the columnar soft matter. In [7], an identifi-
cation method of ovarian follicles has been proposed. The
proposed method is based on the brightness level relation
between ovarian follicles with ova and vacuoles. This re-
search shows the possibility of the ovarian follicle classifi-
cation from ultrasound B-mode images.

Many ultrasound computer-aided diagnostic (CAD) sys-
tems have been proposed in the medical field. In recent
years, the deep learning technology proposed by G. E. Hin-
ton and R. R. Salakhutidinov [8] have been widely used in
the image processing, speech recognition, and text process-
ing. As a survey reported by Q. Huang, et al [9], several ul-
trasound CAD systems with deep learning technology have
been successfully utilized in the major medical application
which includes the breast lesion, the liver lesion, the fetal
ultrasound standard plane detection, and the thyroid nod-
ule, and also the carotid ultrasound image classification.
In the ultrasound CAD systems with deep learning tech-
nology, the deep learning method is utilized to extract fea-
tures from ultrasound images. While man-made features
are used for the conventional ultrasound CAD systems, fea-
tures extracted by the deep learning techniques are used
for the newest ultrasound CAD systems. Such features ex-

tracted by the deep learning are sometimes more effective
than the man-made features [9].

We have proposed a classification system which uses
some kinds of ovarian follicle deformation information by
contacting the ovarian collection needle in [10]. Six kinds
of features were defined in [10]. Using these six kinds of
features, a k-means clustering method had two clusters.
One cluster consisted of eight ovarian follicles with ova and
two vacuoles. The other cluster consisted of one ovarian
follicle with ovum and five vacuoles. Eventually, 13 of 16
ovarian follicles in B-mode images from three patients were
correctly classified. Although these six features are effec-
tive to classify ovarian follicles with ova or vacuoles, we can
not obtain the feature values before paracentesis operations
because these features were based on the deformation in-
formation by contacting the needle. Accordingly, features
which were not based on the deformation information by
the ovarian collection needle have been proposed in [11].
Eight features were proposed which are defined by using
some frames of a B-mode moving image. To extract val-
ues for these eight features, 30 frames until just before the
needle contacting were used. Therefore, since the ovarian
collection needle does not touch to an ovarian follicle, these
eight features were not based on the deformation informa-
tion directly.

In this paper, we propose a novel method to classify
ovarian follicles on ultrasound B-mode moving images. The
proposed method utilizes both some features defined in our
previous works and image features which are vectors ex-
tracted by convolutional neural networks (CNNs). In the
proposed method, some ovarian follicle B-mode images are
presented to a CNN for extracting image features. We also
examine the effectiveness of some kinds of filters which are
applied to B-mode images input to the CNN. The smooth-
ing filter is designed to consider speckle patterns under
the resolution of the ultrasound devices. Feature vectors
related to image features from the trained CNNs and fea-
ture vectors which were defined in [11] are both used for
classification. This paper is organized as follows. In the
section 2, the previous work [10, 11] are explained. Then
the proposed method is described in section 3. In section
4, we compare some results of the proposed method with
the conventional one.

2. PREVIOUS WORKS

We define our problem as a two-class classification prob-
lem. Ovarian follicles on ultrasound B-mode images are
classified into two classes; (1) ovarian follicles with ova, and
(2) ovarian follicles without ova called “vacuoles”. B-mode
moving image sets obtained by medical ultrasound scan-
ning devices are available for classifying ovarian follicles.
Currently, the B-mode moving image sets are obtained at
the time of paracentesis operations. To make the training
data sets, medical doctors classified ovarian follicles into
two classes whenever an ovarian follicle is extracted from
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Table 1: Six features for identifying an ovarian follicle with
an ovum.

No. Name Description

1 C Circularity of outline of ovarian follicles.

2 θ1/
√

2 Angle formed between the two lines defined

by the two points which have the same D1/
√
2.

3 θ0.01 Angle formed between the two lines defined

by the two points which have the same D = 0.01.

4 Ddiff
max the difference between the maximum distances in

both FOP and FOC.

5 θdiffθ
1/

√
2

difference between the θFOP
1/

√
2
and θFOC

1/
√

2

in both FOP and FOC.

6 θdiffθ0.01
difference between the θFOP

0.01 and θFOC
0.01

in both FOP and FOC.

ovaries. Actually, medical doctors extract several ovarian
follicles in a single puncturing at paracentesis operation be-
cause of minimizing patient’s pain by the paracentesis op-
eration. Since medical doctors classified extracted ovarian
follicles one by one, the paracentesis operations for making
training data sets took a long time.

Our purpose is to classify ovarian follicles which ap-
peared in the B-mode moving images into two classes. We
have proposed several kinds of features to classify ovar-
ian follicles in our previous works. First, the six features
which are defined according to the deformation informa-
tion by the ovarian collection needle have been proposed.
In [10], we assumed that there are some differences in the
amount of deformation between ovarian follicles with ova
and vacuoles. Therefore, the frames, which are from the
point of the ovarian collection needle contacted to the ovar-
ian follicle until the point of the collection needle pierced
the follicle, are considered. The six features were defined
based on the above-mentioned frames of the B-mode mov-
ing images. That is, the six features were related to the
deformation information by contacting an ovarian follicle
collection needle. We defined the two kinds of frames as;

Frame of piercing(FOP); the frame contains the scene
of the ovarian collection needle is piercing the follicle
(see Fig. 1a).

Frame of before contacting(FOC); the frame contains
the scene of the ovarian collection needle located 1mm
in front of the target ovarian follicle (see Fig. 1b).

Based on these two frames, six features shown in Table 1
were depicted in [10]. Since the six features were based on
the deformation information by external force given by the
ovarian collection needle, we could not avoid invasion on
patients.

In [11], we have proposed eight features which were not
based on the deformation information. The proposed eight
features were extracted from frames which were before the
ovarian collection needle is touching to the ovarian follicle.
30 frames until just before the ovarian collection needle
contacting to the ovarian follicle were extracted. These

(a) Frame of piercing(FOP)

(b) Frame of before contacting(FOC)

Figure 1: Two kinds of frames of ultrasound images of an
ovarian follicle.

frames have no direct influence from the ovarian collection
needle. The target ovarian follicle is extracted from the 30
frames. The area Si, circularity Ci, average of brightness
Bave, and variance of brightness Bvar are calculated from
the extracted ovarian follicle. Then, the following differ-
ences are calculated.

Sdiff = max{Si} −min{Si}, i = 1, . . . , 30, (1)

Cdiff = max{Ci} −min{Ci}, i = 1, . . . , 30, (2)

Bdiff
ave = max{Bave,i} −min{Bave,i}, i = 1, . . . , 30, (3)

Bdiff
var = max{Bvar,i} −min{Bvar,i}, i = 1, . . . , 30, (4)

where i = 1 means the frame of just before the ovarian
collection needle contacting on the target ovarian follicle,
i = 30 means the frame of one second before the needle
contacting. Moreover differences of the area Si, circularity
Ci, average of brightness Bave, and variance of brightness
Bvar for every adjacent frame are calculated. Therefore,
the following features for every adjacent frame are defined.
These eight features are summarized in Table 2.

Sdiff
adj = max{Sadj} −min{Sadj}, (5)

Cdiff
adj = max{Cadj} −min{Cadj}, (6)

Bdiff
ave,adj = max{Badj,ave} −min{Badj,ave}, (7)
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Table 2: Proposed eight features for identifying an ovarian follicle with an ovum.

No. Name Description

1 Sdiff The area difference between Smax and Smin.

2 Sdiff
adj The area difference between Smax

adj and Smin
adj .

3 Cdiff The circularity difference between Cmax and Cmin.

4 Cdiff
adj The circularity difference between Cmax

adj and Cmin
adj .

5 Bdiff
ave Difference of average of brightness between Bmax

ave and Bmin
ave .

6 Bdiff
ave,adj Difference of average of brightness between Bmax

adj,ave and Bmin
adj,ave.

7 Bdiff
var Difference of variance of brightness between Bmax

var and Bmin
var .

8 Bdiff
var,adj Difference of variance of brightness between Bmax

adj,var and Bmin
adj,var.

Bdiff
var,adj = max{Badj,var} −min{Badj,var}. (8)

3. PROPOSED METHOD

In this paper, we consider classifying ovarian follicles
into two classes by using the image of the target ovarian
follicle in ultrasound B-mode images.

There are some ovarian follicles which appeared in each
frame of the B-mode moving image. First, we need to
extract the target ovarian follicle. Since we focus on to
classify ovarian follicles, we extract ovarian follicle images
by hand. Each extracted ovarian follicle image is a 256 ×
256 pixel size.

In the extracted image, an exclusive part of the tar-
get ovarian follicle is considered as the background. Every
pixel value on the background is set to 255, that is, the
background color is considered as white).

3.1. Smoothing filter

To classify ovarian follicle images directly, a smooth-
ing filter is applied to every B-mode image of the ovarian
follicle. Speckles in ultrasound B-mode scanning images
have been reported in [12]. Speckle patterns in some scan-
ning motions (i.e, linear scan or sector scan) were inves-
tigated theoretically in [12]. In [12], the author described
that the speckle in B-mode images obtained from the ultra-
sound scanning can be treated in a similar manner as laser
speckle. As a case of utilizing speckle patterns in B-mode
images in the medical area, speckle patterns were used to
find parts of pathological change on the liver [13]. Speck-
les appeared in B-mode images do not show any structure
of the target organ directly, however, speckles are created
from the interference of echo signals by scatterers under the
resolution of the ultrasound devices. Some papers have re-
ported that, for example, speckles are almost distributed
uniformly in the B-mode images from the normal liver. On
the other hand, speckles are distributed disproportionally
on the abnormal liver. In [13], the above-mentioned char-
acteristics of the speckles have been used as a smoothing
filter of the B-mode scanning images for the liver medical
examination.

Figure 2: A region of interest (ROI).

Although there is the difference between liver and ovaries,
we consider that the speckle pattern analysis can be ap-
plied to our ovarian follicle classification problem. In our
ovarian follicle classification, the difference between ovar-
ian follicles with ova and vacuoles is the existence of ovum
in the follicle.

An ovum is enough small, that is, its size is under
the resolution of the medical ultrasound scanning devices.
Therefore, we can not find it in the B-mode image. And
also several parameters of the medical ultrasound scanning
devices are optimized to find the shape of ovarian follicles.
If speckle patterns are different between ovarian follicles
with ova and vacuoles, we can consider that the images
obtained by filtering have some differences.

As reported in [13], the amplitude of echo signals by
scatterers under the resolution of the ultrasound scanning
devices is approximately represented as the Rayleigh dis-
tribution. Let us consider a M×N area in a B-mode image
as the region of interest (ROI) as shown in Fig.2. pC is the
center of the ROI. For all pixels in the ROI, weights wj

j = 1, 2, . . . ,M ×N are calculated as the following;

wj =

(
1−

(
Aj −AC

ασ

)2
)2

,

if 1−
(
Aj −AC

ασ

)2

< 0, then wj = 0,

(9)

where AC and Aj are amplitude of pC and pj , respectivly.
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(a) Before filtering

(b) After filtering

Figure 3: Example images of before and after filtering.

σ is the standard deviation of the population, and α is an
arbitrary defined coefficient. The new pixel value of pC is
calculated as the following;

pC =

∑
wjpj∑
wj

. (10)

Figure 3 shows an example in before and after filtering for
an ovarian follicle.

3.2. Two types of neural networks

We consider two types of convolutional neural networks
[14] to extract image features from the filtered ultrasound
B-mode images. One is a convolutional autoencoder and
the other is a layered convolutional neural network.

3.2.1. Convolutional autoencoder

In order to extract image features, a convolutional au-
toencoder is utilized. The convolutional autoencoder is a
kind of unsupervised learning neural networks. Autoen-
coders transform every input into lower dimensional rep-
resentation by encoding layers. Then, the lower dimen-
sional representation is reconstructed for the input by de-
coding layers. The training of autoencoders performs to
adjust weights for realizing the above mentioned encode
and decode processes. The convolutional autoencoder in-
cludes convolutional layers in encoding and decoding lay-
ers. Therefore, by using convolutional autoencoders, we
aim to extract image features. The image features ex-
tracted by the convolutional autoencoders are features of
ovarian follicles in ultrasound B-mode images, which are
not related to ovarian follicles with ova or vacuoles.

3.2.2. Layered convolutional neural networks

While the convolutional autoencoders extract image
features unrelated to the classes, a layered convolutional
neural network is used for extracting features related to
the difference between ovarian follicles with ova and vac-
uoles. The convolutional neural network is a supervised
learning method. In this paper, the last layer (i.e., classi-
fication layer) is designed to classify ovarian follicles with
ova or vacuoles. Therefore, the training data set consists
of two classes. The convolutional neural network includes
some convolutional layers and pooling layers. A softmax
layer which is the last layer of the convolutional neural net-
works classifies feature vectors extracted by convolutional
and pooling layers into two classes. As the training of
the convolutional neural network is performed to classify
ovarian follicles into two classes, the extracted features are
expected to realize image features related to the ovarian
follicles with ova or vacuoles.

3.3. Classification procedure

After every B-mode image is filtered by the above-
mentioned filter, each filtered image is input to a convo-
lutional autoencoder (CNN-AE) or a convolutional neural
network (CNN). The CNN-AE or CNN extracts features
from input filtered images to distinguish ovarian follicles
with ova and vacuoles. Our CNN-AE and CNN architec-
tures are shown in Fig.4 and Fig.5. Feature vectors at
the last layer of the trained CNN-AE or CNN are able to
be used as input vectors to many other machine learning
classification techniques.

In this paper, the two-dimensional features which are
proposed in our previous works (i.e., the area Si and cir-
cularity Ci) of our previous method in [11] and the feature
vectors from the trained CNN-AE or CNN are used as
input vectors for several types of machine learning classi-
fication techniques.
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Figure 4: Our CNN-AE architecture.

Figure 5: Our CNN architecture.

Table 3: Details of B-mode moving images used in this
paper.

Subject 1 Subject 2 Subject 3 Subject 4

Pixels 510× 360

Frame rate 30fps

# of frams 3163 10384 2445 47522

Length 106 sec. 353 sec. 81 sec. 1584 sec.

# of extracted 3 17 2 53

4. EXPERIMENTAL RESULTS

In this section, some experimental results are shown.
The data set was provided from “Reproduction Clinic Os-
aka”. Totally, 75 ovarian follicles were extracted from four
patients. 32 of 75 ovarian follicles had ova. The other 43
ovarian follicles had no ovum, that is, they were vacuoles.
The details of the data set are shown in Table 3. The pres-
ence of the ovum in every extracted ovarian follicle was
examined by medical doctors under a microscope. Ultra-
sound moving images were obtained at the paracentesis
operation for the four patients. The length of each ul-
trasound moving image is different because the number of
extracted ovarian follicles was different between the four
patients. Three of the 75 ovarian follicles in the ultra-
sound moving images were not enough quality to extract
features. For example, the outline of the ovarian follicle
was not clear. Or it appeared on just a few frames in the
moving image. Therefore, 72 ovarian follicles were used in
our experiments.

Figure 6 shows images which were filtered using the
above-mentioned smoothing filter. These figures (both Fig.6
(a) and (b)) are smoother than the original B-mode images.
As shown in Fig. 6, however, we can not detect the clear

(a) Ovarian follicle with an ovum

(b) Vacuole

Figure 6: Example images of after filtering.

difference between images of ovarian follicles with ova and
vacuole by our eyes. Therefore, we need to extract some
features from the B-mode images by CNN-AEs or CNNs,
and then classify these B-mode images using extracted fea-
tures. Our proposed method employs input vectors which
are clipped from ultrasound B-mode images and filtered by
a speckle-based smoothing filter. Moreover, the CNN-AEs
and CNNs used in this paper are not so deep architecture.
Therefore, our proposed method can be considered to be
designed for the small number of data.

The leaving-one-out method was used for training in
the following experiments. First, we examined the effec-
tiveness of the smoothing filter which considers speckle pat-
terns in the ultrasound B-mode images. Tables 4–6 show
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Table 4: Classification results of CNN with filtered image.

Predict
with an ovum vacuole Percent Correct

with an ovum 28 12 70.0%
vacuole 17 15 46.9%

Overall Percent 62.2% 55.6% 59.7%

Table 5: Classification results of CNN with original image.

Predict
with an ovum vacuole Percent Correct

with an ovum 29 11 72.5%
vacuole 20 12 37.5%

Overall Percent 59.2% 52.2% 56.9%

Table 6: Classification results of our previous work (eight
features).

Predict
with an ovum vacuole Percent Correct

with an ovum 30 10 75.0%
vacuole 18 14 43.8%

Overall Percent 62.5% 58.3% 61.1%

the classification results. Table 4 shows CNN results with
filtered images. Table 5 shows CNN results with original
images. And Table 6 shows previous eight feature vectors
[11]. From the Table 4, the classification result of CNN
when filtered images were used is better than the case of
using original images (Table 5). Unfortunately, however,
both results (Tables 4 and 5) which used images only did
not improve the classification performance of our previous
works. The difference of the classification results is quite
small between CNN results with filtered images (Table 4)
and CNN results with original images (Table 5).

Both extracted features at the last layer of the CNN and
the output vector at the encoding layer of CNN-AE can be
used with two features (i.e., the area Si and circularity Ci)
of our previous method in [11] simultaneously. Since the
other six features of the eight features in our previous work
are redundant when images are used as features, we omit-
ted these six features. We tried to classify using several
classification algorithms; (1) AdaBoost, (2) decision trees,
(3) k-nearest neighbors, and (4) random forests. The re-
sults are shown in Tables 7–14. In these tables, sensitivity,
specificity, and accuracy are used as indicators of the effec-
tiveness of our method. The best result was obtained by
random forest algorithms with 70 trees and feature vectors
by CNN-based method using the filtered image feature and
the additional two numerical features (see Table 14). From

Table 7: Classification results of the CNN-AE in using
non-filtered images.

Classifier Sensitivity Specificity Accuracy

AdaBoost 0.625 0.344 0.500
Decision tree 0.500 0.375 0.444
k-NN (k = 1) 0.625 0.500 0.569
k-NN (k = 3) 0.600 0.594 0.597
k-NN (k = 5) 0.575 0.563 0.569
k-NN (k = 7) 0.575 0.500 0.542
k-NN (k = 9) 0.575 0.531 0.556
Rain forest (70 trees) 0.675 0.438 0.569
Rain forest (80 trees) 0.700 0.344 0.542
Rain forest (90 trees) 0.700 0.344 0.542
Rain forest (100 trees) 0.700 0.375 0.556

Table 8: Classification results of the CNN-AE in using con-
bined features (i.e., two numerical and non-filtered image
features).

Classifier Sensitivity Specificity Accuracy

AdaBoost 0.600 0.281 0.458
Decision tree 0.550 0.438 0.500
k-NN (k = 1) 0.450 0.563 0.500
k-NN (k = 3) 0.525 0.594 0.556
k-NN (k = 5) 0.500 0.563 0.528
k-NN (k = 7) 0.550 0.594 0.569
k-NN (k = 9) 0.550 0.563 0.556
Rain forest (70 trees) 0.625 0.313 0.486
Rain forest (80 trees) 0.600 0.281 0.458
Rain forest (90 trees) 0.575 0.281 0.444
Rain forest (100 trees) 0.600 0.281 0.458

Tables 7–10, unfortunately, the results from the CNN-AE
based method are almost the same as our previous work.
That is, we had only one case whose accuracy is the same
as our previous work.

5. CONCLUSIONS

In this paper, we have proposed a new approach to
classify ovarian follicles into two classes. We examine two
types of convolutional neural networks; (1) convolutional
autoencoders (CNN-AEs), and (2) layered convolutional
neural networks (CNNs). The CNN-AEs were used to
extract ovarian follicle image features from B-mode im-
ages. On the other hand, CNNs were used to extract im-
age features related to the difference between ovarian fol-
licles with ovum and vacuoles. For both CNN-AEs and
CNNs, the smoothing filter which is designed to consider
speckle patterns under the resolution of the ultrasound de-
vices was used for filtering ovarian follicle B-mode images.
Then, CNN-AEs and CNNs were used for extracting fea-
tures from the filtered ovarian follicle images. Finally, we
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Table 9: Classification results of the CNN-AE in using
filtered images.

Classifier Sensitivity Specificity Accuracy

AdaBoost 0.625 0.375 0.514
Decision tree 0.625 0.500 0.569
k-NN (k = 1) 0.575 0.438 0.514
k-NN (k = 3) 0.600 0.438 0.528
k-NN (k = 5) 0.600 0.406 0.514
k-NN (k = 7) 0.625 0.406 0.528
k-NN (k = 9) 0.625 0.438 0.542
Rain forest (70 trees) 0.750 0.406 0.597
Rain forest (80 trees) 0.775 0.344 0.583
Rain forest (90 trees) 0.775 0.406 0.611
Rain forest (100 trees) 0.775 0.375 0.597

Table 10: Classification results of the CNN-AE in using
conbined features (i.e., two numerical and filtered image
features).

Classifier Sensitivity Specificity Accuracy

AdaBoost 0.675 0.406 0.556
Decision tree 0.600 0.594 0.597
k-NN (k = 1) 0.625 0.500 0.569
k-NN (k = 3) 0.625 0.563 0.597
k-NN (k = 5) 0.550 0.500 0.528
k-NN (k = 7) 0.575 0.563 0.569
k-NN (k = 9) 0.600 0.531 0.569
Rain forest (70 trees) 0.675 0.406 0.556
Rain forest (80 trees) 0.675 0.406 0.556
Rain forest (90 trees) 0.675 0.406 0.556
Rain forest (100 trees) 0.700 0.406 0.569

proposed a classification method which used both features
extracted by the CNN-AEs or the CNNs from the filtered
ovarian follicle images and numerical features defined by
our previous works (i.e., the area Si and circularity Ci).
From the experimental results, the extracted features by
CNNs are better than those by CNN-AEs. We obtained
better classification results when we used both features ex-
tracted by CNNs from the filtered ovarian follicle images
and numerical features defined by our previous works than
the other results. As shown in the experimental results,
we obtained the best accuracy when two numerical and
image features extracted by the CNN-based method from
the filtered ovarian follicle images were used as inputs.

One of our future works is to examine the parameters of
smoothing filters. The parameters were originally proposed
for the liver diagnosis in [13]. We need to optimize them
for ovarian follicles classification.

Currently, medical doctors cannot distinguish between
ovarian follicles with ova and vacuoles from ultrasound
CAD systems. On the other hand, about 68% of ovarian
follicles were correctly classified from ultrasound B-mode

Table 11: Classification results of the CNN in using non-
filtered images.

Classifier Sensitivity Specificity Accuracy

AdaBoost 0.650 0.563 0.556
Decision tree 0.600 0.625 0.500
k-NN (k = 1) 0.650 0.438 0.611
k-NN (k = 3) 0.700 0.406 0.653
k-NN (k = 5) 0.725 0.438 0.653
k-NN (k = 7) 0.775 0.469 0.667
k-NN (k = 9) 0.750 0.438 0.667
Rain forest (70 trees) 0.825 0.594 0.639
Rain forest (80 trees) 0.825 0.594 0.639
Rain forest (90 trees) 0.825 0.594 0.639
Rain forest (100 trees) 0.825 0.594 0.639

Table 12: Classification results of the CNN in using con-
bined features (i.e., two numerical and non-filtered image
features).

Classifier Sensitivity Specificity Accuracy

AdaBoost 0.725 0.563 0.597
Decision tree 0.625 0.625 0.514
k-NN (k = 1) 0.650 0.438 0.611
k-NN (k = 3) 0.700 0.406 0.653
k-NN (k = 5) 0.725 0.438 0.653
k-NN (k = 7) 0.775 0.469 0.667
k-NN (k = 9) 0.750 0.438 0.667
Rain forest (70 trees) 0.800 0.563 0.639
Rain forest (80 trees) 0.850 0.563 0.667
Rain forest (90 trees) 0.850 0.563 0.667
Rain forest (100 trees) 0.825 0.563 0.653

images by our proposed classification method. Unfortu-
nately, although the classification accuracy is not enough
to use our classification system in the clinical situation,
we believe that our proposed method has a possibility of
classifying ovarian follicles at paracentesis operations.
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