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Abstract

This paper presents an automatic vehicle type recognition, classification
and counting system that is view invariant and can be used in real-time
road transportation and environmental pollution management systems.
A Support Vector Machine (SVM) classifier is used to classify vehicles
into four categories namely; cars, jeeps, buses and trucks, respectively,
based on measurable image features. Image analysis is performed on a set
of features that consists of Region, Histogram Oriented Gradient (HOG)
and Local Binary Pattern (LBP) histogram features. A feature combi-
nation approach is proposed for recognition; Region, LBP and HOG
(RLH). Correlation based Feature Selection (CFS) is used to select the
most discriminative features from the above feature set thereby improv-
ing recognition accuracy and reducing the time required for classifica-
tion. Various success rates are reported from the experiments conducted
on two separate datasets, with average accuracy reaching 95% on the
combined datasets. Proposed feature combination techniques compared
with Region, HOG, LBP, with results showing higher recognition accu-
racy achievable when using the proposed feature combinations. Separate
frontal /rear and angular view datasets have been used in the experiments
to demonstrate the adaptability of the proposed algorithm to variations
of the view angle. Initially three practical application scenarios that will
benefit from the proposed technology are presented namely; access con-
trol, toll collection and the estimation of air pollution levels caused by
vehicular traffic, justifying the practical importance and relevance of the
research presented.
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1. INTRODUCTION
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by the Interpol report of [1] vehicle crime is:

...a highly organized criminal activity affecting

all regions of the whole world and with clear
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links to organized crime and terrorism. Ve-
hicles are mot only stolen for their own sake,
but are also trafficked to finance other crimes.
They can also be used as bomb carriers or in
the perpetration of other crimes.

To this end, there are many situations where access to
vehicles needs to be monitored automatically to manage
and control their movement to and from secure sites, mo-
torways and across international borders. Although num-
ber plate recognition provides a level of security based on
the licence information gathered, in an era where vehicle
cloning prevails, any additional vehicle identification data
can help to improve the robustness against such unlawful
activities. The identification of vehicle type and keeping
a count of each type passing certain known locations will
help this process.

Further the increase of the cost of building and main-
taining motorways have forced many governments to con-
sider privatising motorways resulting in a need for toll col-
lection from their users. The number of toll roads present
is growing fast internationally and so is the crime rate to
avert the payment of the correct toll. Toll is normally
charged based of vehicle type and the varied tariffs used
means that when a human observer is not present the sys-
tems can be fooled by vehicle that is charged a higher rate
being driven through a gate meant to be for a type that
is charged less. The automatic identification of the vehicle
type can help take preventive measures to stop this crime.

The exponential increase of road traffic over the years
has caused serious concerns about the level of pollution
caused by vehicular traffic. Especially the production of
ozone is considered as a by-product of nitrogen dioxide
caused directly due to internal combustion engines, when
exposed to direct sunlight. The larger the power of a ve-
hicle engine, the larger would be the impact it will have
on the creation of the secondary pollutants such as, ozone.
The counting of various types of vehicles that uses a mo-
torway on an hourly or daily basis will help in estimating
the emitted and formed air pollutants from vehicles [2].
Simply detecting vehicles and tracking them will allow the
monitoring of total road usage and the estimation of their
speed that also has an impact on approximating the pol-
lution levels [2].

The above needs solicits the importance of the design,
development, implementation and the installation of a com-
puter vision based automated vehicle counting and type
recognition system, which is the key focus of the research
presented in this paper.

Existing literature in vehicle detection, counting and
type recognition proposes a number of different approaches.
The authors of [3] showed that even in a congested road
traffic condition an AND-OR graph (AOG) using bottom-
up inference can be used to represented and detect ve-
hicle objects based on both frontal and rear views. In
a similar situation, [4] proposed the use of strong shad-
ows as a feature to detect the presence of vehicles in a
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congested environment. In [5], vehicles were partitioned
into three parts; road, head and body, using a tripwire
technique. Subsequently haar wavelet features extracted
from each part and principal component analysis (PCA)
is performed on these features calculated to form 3 cate-
gory PCA-subspaces. Further multiple discriminate anal-
ysis (MDA) is performed on each PCA-subspace to ex-
tract features which are subsequently trained to identify
vehicles using the hidden markov model-expectation max-
imisation HMMEM algorithm. In another experiment, a
camera calibration tool was used on detected and tracked
vehicle objects so as to extract object parameters, which
were then used for the classification of the vehicle into the
class of cars or non-cars [6]. In [7] vehicle objects were
detected and counted using a frame difference technique
with morphological operators, dilation and erosion. In [8],
using maximum likelihood Bayes decision rule classifier on
normalised local features (roof, two tail-lights and head-
lights of rear and front view) vehicle or non-vehicle ob-
jects are detected. Further to handling the unevenness of
the road surface, the author simulated images with PCA
applied on each sub-region to reduce feature sets, compu-
tation time and to speed-up processing cycle. In another
classification task by [9], segmentation through image dif-
ferencing was used to obtain foreground object upon which
sobel edge is computed; furthermore, size feature is ex-
tracted from two level dilations with filling morphological
image sets and used for classification into small, medium
and large. In [10], an alternative to expensive electronic
toll collection (ETC) full-scale multi-lane free flow traffic
system was proposed; the technique used scale-invariant
feature transform (SIFT), Canny edge detector, k-means
clustering with Euclidean matching distance metric for in-
ter and intra class vehicle classification. A technique for
rear view vehicle classification, [11] proposed the use of a
hybrid dynamic Bayesian Network (HDBN) to classify ve-
hicles. Tail light and vehicle dimensions with respect to
the dimensions of the license plate were the feature sets
used for classification. Width distance from license plate
and the angle between the tail light and the license plates
formed the eleven features used for classification. The ex-
periment was performed in two phases; known vs unknown
classes and four known classes using HDBN. HDBN was
compared with three other classifiers. The performance
evaluation result using a ROC curve shows HDBN as the
best classifier for rear view vehicle classification. In [12],
a technique for traffic estimation and vehicle classification
using region features with a neural network (NN) classifier
was proposed.

In observing the techniques proposed in literature sum-
marised above, it can be concluded that vehicles are recog-
nised and classified at different angles under different con-
ditions using different feature sets, classification techniques
and hence algorithms. In other words a change of camera
angle requires a change of features that needs to be ex-
tracted for classification. The classification technique that
performs best will also change. Further, most techniques
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have been tested either on rear or front views only. In
practice once a camera is installed in an outdoor environ-
ment with the hope of capturing video footage for vehicle
type recognition, it is likely that due to wind or neglect in
installation, the camera could turn in due course. If the ve-
hicle type recognition system was dependent significantly
on the angle of view, the system would thus fail to operate
accurately. Further at the point of installation practical
problems may be such that the camera position and ori-
entation will have to be changed as compared to the fixed
angular view that it has originally being designed for. This
will either requires the system to be re-redesigned using dif-
ferent feature sets, classifiers and algorithms or the system
having to go through a camera calibration processes which
is typically non-trivial and time consuming. It would be
ideal if at the new orientation the captured content could
still be used for classification.

Given the above observations we propose a novel algo-
rithm for vehicle type recognition and subsequent counting,
which is independent of the camera view angle. We adopt
a strategy that uses multiple features that are scale and
rotation invariant, leading to the accurate classification of
vehicles independent of the camera angle.

For clarity of presentation this paper is divided into
five sections. Apart from this section which introduces the
reader to the problem domain and identifies the research
gap based on existing work presented in the literature, the
remaining sections are structured as follows: the research
background is presented in section 2 and the proposed ve-
hicle type recognition algorithm is presented in section 3.
Section 4 is focused on experimental results and a per-
formance analysis while section 5 shows comparison with
state of art techniques with concluding remarks and further
work provided in section 6.

2. BACKGROUND OF STUDY

The novel algorithm to be presented in next section and
illustrated by Figure 1 is based on a number of established
theories and mathematical concepts. To this effect this
section provides the theoretical foundations to Gaussian
Mixture Models (GMM), Canny Edge Detection (CED),
Local Binary Pattern (LBP), Histogram of Oriented Gra-
dients (HOG), Correlation based Feature Selection (CFS)
and Support Vector Machines (SVM). The foundations of
the proposed approaches are built upon these concepts,
theories and mathematical definitions.

2.1. Gaussian Mizture Model (GMM)

According to [13], a GMM is a parametric probabil-
ity density function that is represented as a weighted sum
of Gaussian distributions. The GMM technique uses a
method to model each background pixel by a mixture of k
Gaussian distributions [14]. The weight of the mixture rep-
resents the time proportion for which the pixel values stay

unchanged in a scene. Probable background colours stay
longer and are more static than the foreground colours.

In [13], the recent history of each pixel, Xy, ..., Xy, is
modelled by a mixture of K Gaussian distributions. The
probability of observing the current pixel value is defined
as:

K
P(Xy) = Zwi,t *1)(Xe, pit, Z) (1)
i=1 it
where K is the number of distributions, w; ; is an esti-
mate of the weight (what portion of the data is accounted
for by this Gaussian) of the i*" Gaussian in the mixture
at time ¢, ;¢ is the mean value of the i'" Gaussian in the
mixture at time ¢, Zi,t is the covariance matrix of the i
Gaussian in the mixture at time t, and 7 is a Gaussian
probability density function of the form:

1 1 -1
Xtv ) - ﬁeif Xt — [t TZ (Xe—pt)
D ESIE R o

The covariance matrix is of the form:

Z =oil (3)

k.t

2.2. Canny Edge Detection

According to [15] an edge detector is an operator that
is sensitive to grey level change in an image. Detecting
these changes in intensity can be accomplished using first
or second-order derivatives [16]. Finding edge strength and
direction at location (x,y) of an image, I, is accomplished
using the gradient, denoted by VI; defined by the vector
[16]:

VIEgrad(I)E[gw]:[gi,g;] (4)
9y

Equation 4 has an important geometrical property that
it points in the direction of the greatest rate of change of
I at location (z,y).

The direction measured with respect to the x — axis
and the value of the rate of change in the direction of the
gradient vector is denoted as [16]:

M(z,y) = mag(VI) = /92 + g; (5)

and

alz,y) = tan~! [Qy} (6)

9z

Canny defined a set of goals for an edge detector and
described an optimal method for achieving them [15]. The
goals are,

e Error rate: a detector should respond to edges only
and not miss any.
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e Localisation: the distance between pixels found and
the actual edge should be as small as possible.

e Response: should not identify multiple edges where
only one edge is present.

Canny assumed a step edge subject to white Gaussian
noise [15]. The edge detector was assumed to be a convo-
lution filter f, which would smooth the noise and locate
the edge.

In order to capture the contour in the vehicle types,
we applied CED on the vehicle object so as to be able to
subsequently encode shape information based on edges.

2.8. Local Binary Pattern (LBP)

The Local Binary Pattern (LBP) operator labels the
pixels of an image with decimal numbers that encode the
local structure around each pixel of an image [17]. Each
pixel (i.e. g',g%,--+,¢%) is compared with its eight neigh-
bours (see equation 7) by subtracting the center pixel value;
the results; if negative, are encoded as 0, and the otherwise
1 (see equation 8). For each given pixel, a binary number is
obtained by concatenating all these binary values (referred
to as LBPs, see equation 9) in a clockwise direction, which
starts from the one of its top-left neighbour. The corre-
sponding decimal value of the generated binary number is
then used for labeling the given pixel.

LBP can be described as follows:

Pixel neighbourhood:

gs g1 92
97 9e 93 (7)
g6 95 g4
thresholding:
s(gs —gc) (g1 —ge) s(g2 = ge) Lz>0
s(g7 — gc) s(gs —ge) | s(z) = { 0z <0
s(96 — 9c)  s(g95 —gc)  s(g91— ge) ’

LBP for pixel:

P-1
LBP = s(gp—9c)2"

p=0
Example
56 58 95
20 80 98
22 79 80
s(56 — 80) s(58 —80) (95— 80) 0 0 1
5(20 — 80) 5(98 — 80) =10 1
$(22 — 80) s(79 —80) (80 — 80) 00 1
0x27 0x20 1x2!
0 x 26 1 x 22 = 000011104 (9)
0x2 0x2% 1x23
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000011102
= 14

Other variants are; circular LBP, rotation invariant
LBP, uniform LBP, multi-scale LBP, and multi-dimensional
LBP.

2.4. Histogram of Oriented Gradient (HOG)

According to [18], HOG is described as a concept that
the local appearance and shape of an object can be charac-
terized well by the distribution of local intensity gradients
or edge direction, without knowledge of edge positions. It
is usually implemented by dividing an image window into
small regions named cells and accumulating each local cell’s
1— D histogram of gradient directions or edge orientations
over the pixels. The combined entries form this representa-
tion that is contrast normalised to ensure invariance to illu-
mination. This normalisation is extended to all cells in the
block to form the HOG descriptor. Dalal and Triggs [18]
explored different methods for block normalization. Let v
be the non-normalized vector containing all histograms in
a given block, ||v||, be its k —norm for k = 1,2 and e be a
small constant. Then the normalization factor can be one
of the following:

v

2
Vilvllz + e

L2 — hys : L2 — norm followed by clipping (limiting the
maximum values of v to 0.2) and renormalizing,

L2 —norm: f = (10)

v
[vfl, +e

v
Ll—sqrt:f= |—0—
S A Vi v s

In their experiments, Dalal and Triggs found that the
L2—Hys, L2—norm, and L1—sqrt schemes provide similar
performance, while the L1 — norm provides a slightly less
reliable performance; however, all four methods showed
significant improvement over the non-normalized data [18].

(11)

L1 —norm: f =

(12)

2.5. Correlation-based Feature Selection

According to [19] as reported by [20], CFS is a filtering
algorithm that evaluates subset features based on the in-
dividual feature predicting power of a class label. In [20]
CFS is reported as:

_ hTe
VEk+k(k—1)777
where k is the number of features selected in current

subset, r.s is the mean feature-class correlation for each

element of current subset, r¢¢ is the mean feature-feature
correlation for each pairwise of element. It begins with
empty set and one at a time add features that holds best
value. Best first search method is applied to get merit

(13)

S

value.
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2.6. Support Vector Machine

According to [21], SVM is a technique used to train
classifiers, regressors and probability densities that is well-
founded in statistical learning theory. SVM can be used
for binary and multi-classification tasks.

2.6.1. Binary classification

SVM perform pattern recognition for two-class prob-
lems by determining the separating hyperplane with max-
imum distance to the closest points of the training set. In
this approach, optimal classification of a separable two-
class problem is achieved by maximising the width of the
margin between the two classes [22]. The margin is the
distance between the discrimination hyper-surface in n-
dimensional feature space and the closest training patterns
called support vectors. If the data is not linearly separable
in the input space, a non-linear transformation ®(.) can
be applied, which maps the data points x € R into a high
dimensional space H, which is called a feature space. The
data is then separated as described above. The original
support vector machine classifier was designed for linear
separation of two classes; however, to solve the problem of
separating more than two classes, the multi-class support
vector machine was developed.

2.6.2. Multi-class classification

SVM was designed to solve binary classification prob-
lems. In real world classification problems however, we
can have more than two classes. In the attempt to solve
qclass problems with SVMs; training ¢ SVMs was involved,
each of which separates a single class from all remaining
classes, or training ¢? machines, each of which separates a
pair of classes. Multi-class classification allows non-linearly
separable classes by combining multiple 2 — class classi-
fiers. N —class classification is accomplished by combining
N 2 — class classifiers, each discriminating between a spe-
cific class and the rest of the training set [22]. During the
classification stage, a pattern is assigned to the class with
the largest positive distance between the classified pattern
and the individual separating hyperplane for the N binary
classifiers. One of the two classes in such multi-class sets of
binary classification problems will contain a substantially
smaller number of patterns than the other class [22].

SVM implementation of [23] was used in the experi-
ments supporting the research presented in this thesis, us-
ing CS model type, Gaussian RBF kernel and mean nor-
malised parameters.

SVM classifier was chosen because of its popularity and
speed of processing.

3. RESEARCH METHODOLOGY

This section introduces the reader to the proposed method-

ology, presenting in detail the functionality of each mod-
ule/stage of the proposed vehicle type recognition system
under three main topics: vehicular object segmentation;

feature extraction; and vehicular object classification. Fig-
ure 1 illustrates a block diagram of the proposed system.

GMM based
background
subtraction

v
Place within
100x100 fitted
ROI

v

Compute canny
edge for
foreground vehicle

]

Morphological
operations, disk
structure, bwareaopen,
dilate and fill

Vehicle Object, Segmentation
u T i

\ A 4 v
Extract LBP Extract region Extract HOG
histogram features features
Select 17

region features

Feature
vector

Feature|Extraction

1

CFS Feature
selection

/N

TrainiTesting

SVM
classification

Classification
results

Vehicle classification

Figure 1: Proposed methodology for vehicle classification

The analysis of the performance of the proposed sys-
tem for vehicle type recognition was conducted on datasets
gathered from two low medium resolution cameras that
were installed on the roadside of the Sohar Highway, Oman.
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They were of pixel resolution 320 x 240, and the frame rate
was 25 FPS. The data used in the experimental analysis
consisted of 10 hours video footage, captured during day-
time.

3.1. Vehicular object segmentation

The video frames were first segmented using a GMM
(section 2.1) based foreground /background subtraction al-
gorithm [14, 13] that detects moving objects. Due to the
close-up view settings used in capturing the video footage
from a motorway environment, it can be assumed that all
foreground objects picked up by the above algorithm are
moving vehicles only. The segmented vehicular object re-
gions need further processing to ensure that the segmented
regions more appropriately represent the true shape of a
vehicle. For this purpose a Canny Edge detector was first
used to estimate the edges of the segmented object and
the segmented region was subsequently refined using sev-
eral morphological operators [24] that included, disk struc-
ture, bwareaopen, dilation and filling. The contribution of
each of the operators in improving the segmented vehicular
object shapes is demonstrated by the experimental results
presented in figure 2.

Figure 2: Diagram shows original vehicle, after edge de-
tection, after removing extra edges and after dilate and fill
operations respectively

After the extraction of the foreground vehicular ob-
jects, they are placed within tightest fitting square shaped
Regions of Interest (Rols). These are subsequently resized
to a normalised size of 100 x 100 pixels that are the regions
used by subsequent stages for further processing.

3.2. Feature extraction

Feature extraction is performed on square shaped win-
dows (normalised to 100 x 100 pixel areas) surrounding the
segmented foreground objects, with the background pixels
within the square area set to zero. Firstly for the purpose
of training, we manually extracted vehicle image samples
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normalised to a size of 100 x 100 pixels from the recorded
video footage frames. Figures 3 and 4 illustrate some ex-
amples of segmented foreground objects.

Figure 3: Training samples - some segmented vehicles from
front /rear view dataset

Figure 4: Training samples - some segmented vehicles from
angular view dataset

For testing purposes the regions of interest are auto-
matically segmented following the process described in sec-
tion 2.1 Note that once the segmented foreground region is
extracted it is first enclosed within a tightest fitting square
area that is subsequently normalised to a size 100 x 100
pixels. The pixels within the square area but outside the
object’s region-of-interest is set to zero. The features are
calculated on the above mentioned 100 x 100 square re-
gions. The following sections describe the feature extrac-
tion process.

We propose the use of 17 simple scalar Region descrip-
tors as features, alongside Histogram Oriented Gradient
(HOG) and Local Binary Pattern (LBP) histogram fea-
tures. They can be detailed as follows.

3.2.1. Region Discriptors/Features
We propose the initial use of 17 Region Features,
which can be defined as follows:

1. Area[25]: The total number of pixels that are in-
cluded in the region-of-interest within the square area.

2. Centroid [25]: Horizontal and vertical coordinates of
center of mass are computed as the two feature that
represent the centroid.

3. Bounding Box [26]: The smallest rectangle contain-
ing the region-of-interest. Bounding box feature is
of the form [z, y, width]; where x, y specifies the
upper-left corner of the bounding box, and width is
in the form [Z.yigth Ywiden-.-] and specifies the length
of the bounding box along each dimension.
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4. Eccentricity [26]: The Eccentricity characteristic is
the ratio of the length of the maximum chord A to
the maximum chord B, which is perpendicular to of
the region-of-interest enclosed within the rectangle.

5. Major Axis Length [26]: The length (in pixels) of the
major axis of the ellipse that has the same second
moments as the region-of-interest.

6. Minor Axis Length [26]: the length (in pixels) of the
minor axis of the ellipse that has the same second
moments as the region-of-interest.

7. Orientation [26]: The angle (in degrees) between the
x-axis and the major axis of the ellipse that has the
same second-moments as the region-of-interest.

8. Filled Area [26]: The number of pixels in Filled Im-
age. where filled image is a binary image (logical) of
the same size as the bounding box of the region-of-
interest.

9. Convex Area [26]: The number of pixels within the
convex hull of the region-of-interest, with all pixels
within the hull filled in.

10. EquivDiameter [26]: the diameter of a circle having
the same area as the region-of-interest.

11. Solidity [26]: The proportion of the pixels in the con-
vex hull that are also within the region-of-interest.
Computed as Area / ConvexArea.

12. Extent [26]: The proportion of the pixels in the bound-
ing box that are also in the region-of-interest. Com-
puted as the Area divided by area of the bounding
box.

13. Perimeter [26]: The perimeter is the length of the
boundary of the object region-of-interest, in pixels.

Note that since horizontal and vertical coordinates of
the centroid are computed as two separate centroid fea-
tures and bounding box features includes four component
features, namely, the x and y co-ordinates of the top left
hand corner and the width and height of the bounding box
there are altogether a total of 17 region features that will
be considered.

3.2.2. HOG Feature
The HOG features were extracted as defined in section
2.4. HOG feature of length 144 was computed thus:

F=I.)2—19).)](F—ol)+1

length = T1[7, 5,4 14

where ¢/ is a two element vector [2 2] (block size), k is
the number of bins; 9 , 2 is a two element vector [32 32]
(cell size), I is 100 x 100 (size of the image), and of is [1 1]
(/2 - block overlap).

3.2.8. LBP Feature

The LBP histogram Feature (section 2.3) was extracted
from each image enclosed within the 100 x 100 rectangular
area giving a 256 bin histogram.

3.2.4. Feature Combination

In order to recognise, classify and count vehicle types,
we captured appearance and shape information using the
proposed feature sets; in doing so, Region Features, HOG
Features, and LBP Histogram Features defined above were
extracted from the segmented foreground object and were
combined to form a feature attributes for the classification
of vehicles into four categories namely, cars, buses, jeeps
and trucks respectively. The extracted Region (17), HOG
(144) and LBP histogram (256) features were combined
and used for the experiments.

3.3. Feature selection

To reduce the feature space and speed-up the process-
ing cycle, we used the CFS [19] approach (see Section 2.5)
as feature selector. CFS algorithm helps to rank feature
subsets according to the correlation based on the heuris-
tic "merit” as reported by [20]. This reduced the original
feature attributes obtained from the segmented foreground
vehicle objects to minimal features attributes. In section 4
we showed that with feature selection, substantial accuracy
improvement for vehicle classification using both types of
views was achieved.

4. EXPERIMENTAL ANALYSIS

A number of experiments were conducted to evaluate
the performance of the proposed algorithm in vehicle type
recognition. The experiments were conducted on video

footage captured by a general purpose, non-calibrated, CCTV

camera installed on the side of Sohar Highway, Oman, in
the city of Sohar. As the robustness of the algorithm to the
vehicle’s angle of approach to the camera axis and real-time
performance capability are two important design criteria,
further experiments were conducted to evaluate in detail
the accuracy and speed of the proposed algorithm.

Two video datasets were collected for training and test-

ing, by installing the camera appropriately to capture front/rear

(F/R) views of the vehicles and side/angular views. The
first dataset was collected during a short duration (15 min-
utes) and captured the views of the vehicles in line with
the motorway lanes. This was achieved by filming from
an overhead bridge with the camera installed rigidly on a
tripod. The second dataset was captured over a 10 hour
period of daytime and recorded footage at approximately
a 45Y angle from the direction of the movement of vehicles.
It is this angle that we consider a more practical direc-
tion of view for a camera installed in the roadside. The
experimental results for the two datasets are presented,
combined and separated to enable subsequent, direct com-
parison. The idea is to prove that the proposed algorithm
can produce accurate results regardless of the angle of op-
eration as long as training has been done on sample images
that have been recorded at a similar angle.
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In general, the set of input-output sample pairs that are
used for the training of the classifier can be represented as,
($1,y1),(Z‘Q,yz),...,($N,yN) (15)
where the input x; denotes the feature vector extracted
from image I and the output y; is a class label. Since
we are categorising into vehicle types, the class label y;
encodes the four vehicle types, namely, cars, buses, jeeps
and trucks; while the extracted feature x; encodes one of
the combinations of the feature sets described above, i.e.
Region, LBP and HOG features; 1). Region; 2). LBP; 3).
HOG; 4). Region and LBP (RL) ; 5). Region and HOG
(RH); 6). Region, LBP and HOG (RLH); 7). LBP and
HOG (LH) respectively.

Note that all of the above seven feature set combina-
tions were tested to determine which combinations results
in the best accuracy. As two datasets were used, namely;
F/R view dataset and angular view dataset. The experi-
mental results are presented separately in sections 4.1 and
4.2 respectively, as follows:

4.1. Experiments on the front and rear view dataset

The dataset consisted of approximately 100 different
vehicles and was split 50:50 for the purpose of training
and testing. The vehicles captured and thus used in ex-
perimentation only consisted of two vehicle types, namely,
cars and buses (unfortunately due to short duration of test
data recording no jeeps and trucks were captured) and
hence the classification was of a binary nature, i.e. into
these two classes.

We conducted experiments using different feature at-
tributes; 1). Region; 2). LBP; 3). HOG; 4). RL; 5). RH;
6). RLH; 7). LH. Various success rates were recorded. Us-
ing region features, we recorded 93% prediction accuracy
when using the entire set of feature attributes and the same
percentage accuracy when CFS selected 3 discriminating
features from the original 17. Using LBP features only, we
recorded 79% recognition accuracy using the entire set of
feature attributes with significant improvement of recogni-
tion accuracy to 90% when CFS selected 8 discriminating
features from the original 256. Using HOG features only,
we recorded a 97% recognition accuracy using the entire set
of feature attributes with accuracy dropping to 94%, when
CFS selected 23 discriminating features, from the original
set of 144. Using RL features, we recorded 99% recog-
nition accuracy using the entire set of feature attributes
with improvement to 100% recognition accuracy when CFS
selected 8 discriminating features from the possible total
of 273. Using RH features, we recorded 96% recognition
accuracy using the entire set of feature attributes, with
an improvement to 97% recognition accuracy when CFS
selected 10 discriminating features from the total of 161.
Using LH features, we recorded 96% recognition accuracy
using the entire set of feature attributes, with an improve-
ment to 97% recognition accuracy when CFS selected 24
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discriminating features from a total of 400. Finally, us-
ing RLH features, we recorded 97% recognition accuracy
when using the entire set of feature attributes with same
level of accuracy of 97% indicated when CFS selected 16
discriminating features from the original 417.

A summarisation of these results and observations are
recorded in the first third of the table 1.

Figure 5 below shows an example of a classified vehicle
from the F/R dataset.

Figure 5: Some examples of recognised vehicle from
front /rear dataset

4.2. Ezxperiments on angular view dataset

The second dataset obtained at an angle of approxi-
mately 45° to the direction of vehicular movement con-
sisted of sufficient number of examples of all four types of
vehicles that can be used for training purposes. Therefore
the classification was carried out into four categories cars,
jeeps, trucks and buses respectively. A 50:50 split was used
for training and testing.

We conducted experiments using all of the seven differ-
ent selections of feature attributes; 1). Region; 2). LBP;
3). HOG; 4). RL; 5). RH; 6). RLH; 7). LH. Various
success rates were recorded. Using region features only, we
recorded 85.7% recognition accuracy using the entire set
of feature attributes with an improvement to 86% recogni-
tion accuracy when CFS selected 9 discriminating features
from the original 17. Using LBP features, we recorded
74% recognition accuracy using the entire set of feature
attributes, with a significant improvement to 77% recogni-
tion accuracy when CF'S selected 20 discriminating features
from the original 256. Using HOG features, we recorded
92.7% recognition accuracy using the entire set of feature
attributes with accuracy dropping to 89% recognition accu-
racy when CFS selected 34 discriminating features from the
original 144. Using RL features, we recorded 89% recog-
nition accuracy using the entire set of feature attributes
with an improvement to 96% recognition accuracy when
CFS selected 26 discriminating features from the original
273. Using RH features, we recorded a 95% recognition
accuracy using the entire set of feature attributes with the
accuracy dropping to 93% when CFS selected 22 discrim-
inating features from the original 161. Using LH features,
we recorded a 93% recognition accuracy using the entire
set of feature attributes with an improvement to 94.7%
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recognition accuracy when CFS selected 47 discriminating
features from the original 400. Finally, using RLH features,
we recorded a 94% recognition accuracy using the entire set
of feature attributes with significant improvement of accu-
racy to 97% when CFS selected 37 discriminating features
from the original set of 417.

A summarisation of these results and observations are
recorded in the second third of the table 1.

Figure 6 below shows some examples of classified vehi-
cles from the angular view dataset.

Figure 6: Some examples of recognised vehicle from angu-
lar dataset

4.8. Analysis of Results

Table 1 summarises the recognition accuracies achieved
when using the two datasets (i.e. F/R and angle), with and
without feature selection. It also gives an indication of the
number of features in each category, i.e., Region, HOG,
LBP and their various feature combinations that remain
after feature selection is applied. The table also includes
experimental results when the two datasets were combined
for both training and testing purposes. [Note: these are
included in the bottom third of the table. CV = combined
view.].

Table 1: Classification accuracy results with selected fea-
tures

Features | Whole | Selected | Selected View
acc acc features angle
HOG 97% 94% 23 F/R
Region | 93% 93% 3 F/R
LBP 79% 90% 8 F/R
RL 99% 100% 4R, AL F/R
RH 96% 97% 3R,7H F/R
LH 96% 97% 6L,18H F/R
RLH 97% 97% 3R,8H,5L F/R
HOG 92.7% | 89% 34 Angle
Region | 85.7% | 86% 9 Angle
LBP 74% 7% 20 Angle
RL 89% 96% 9R,17L Angle
RH 95% 93% 8R,14H Angle
LH 93% 94.7% 221,,25H Angle
RLH 94% 97% 7R,14H,16L | Angle
HOG 90% 87.8% 35 Ccv
Region | 75% 74% 7 Ccv
LBP 4% 80% 23 Cv
RL 84% 82.5% 7R,15L Cv
RH 91.5% | 83.5% 9R,11H Cv
LH 89.5% | 91.8% 20L,25H CV
RLH 91.5% | 90.8% 8R,12H,15L | CV

The overall conclusion when observing the results tab-
ulated in table 1 is that the feature combinations RL, RH,
LH and RLH performs best as against using a single set of
features all being either Region, LBP or HOG features.

Results tabulated in table 1 shows that the experiments
on the first dataset (that consists of vehicles captured from
their F/R) indicates higher accuracy figures as compared
to experiments with the second dataset (angular view).
There are many reasons for this. It is noted that with the
F/R dataset the classifications were done only between two
classes, namely cars and buses. This was due to the prac-
tical reason that during the short duration (15 minutes) in
which the video footage of F/R dataset was captured, only
a very few samples of trucks and jeeps appeared in the
footage. This made it impossible to find sufficient sam-
ples to train the classifier. Classifying between two vehicle
classes which are relatively distinct (i.e. cars vs buses)
as in the experiments, will be more accurate as compared
to discriminating between four vehicular classes that have
some class pairs, which are harder to discriminate between
(e.g. cars vs jeeps and jeeps vs mini buses). This argu-
ment is justified when analysing the confusion matrices of
tables 2and 3 for the two datasets using the feature set of
RLH. Further the angular dataset was significantly larger,
though producing a lower accuracy provides a more accu-
rate and trusted estimate of the performance accuracy of
the proposed approach.
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Table 2: Confusion matrix for Angular view dataset using
RLH feature

Car Jeep  Bus Truck
Car 1480 0 0 0
Jeep 60 1380 20 0
Bus 20 60 1480 0
Truck 0 0 0 1500

Table 3: Confusion matrix for F/R view dataset using RLH
feature

Car Bus
Car 500 10
Bus 20 470
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Figure 7: Accuracy on both datasets

Figure 7 plots the accuracy of various techniques, with
and without feature selection, for comparison purposes.
We see that the feature combination techniques, in par-
ticular the RLH technique performed generally better in
all experiments.

Table 4: Speed of processing using varying feature at-
tributes in seconds

Features F/R | F/R | Angle- | Angle{ CV | CV -
-W | -8 W S -W | S
HOG 0.02 0.01 0.08 0.04 0.17 | 0.05
Region | 0.01 0 0.03 0.02 | 0.03 | 0.02
LBP 0.05 | 0.01 0.2 0.03 | 0.37 | 0.04
RL 0.03 | 0.01 0.14 0.03 | 0.32 | 0.05
RH 0.01 0 0.09 0.03 | 0.14 | 0.04
LH 0.03 0.01 0.15 0.04 0.27 | 0.05
RLH 0.02 0.01 0.13 0.04 0.6 0.07

Using different combinations of features will result in
spending different amount of time for modelling. Table 4,
and Figure 8 illustrate that when the whole feature set is
used, time required for modelling increased; this is due to
the fact that when the number of feature attributes are
large, more time is required for the modelling to complete
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successfully. However the careful analysis of the results also
indicate that feature selection can improve the classifica-
tion result and reduce the feature set to a reduced number
of discriminative features that result in making the time
requirement for classification minimal.

0.7
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I‘l'l_._-.__

selected_C selected_A  whole_FR  selected_FR

01 I
o
whole_C

whole_A

B HOG Reg LBP ReglBF MRegHOG MLBPHOG MReglBPHOG

Figure 8: Speed of processing: whole vs selected. Nota-
tions used: C - combined view, FR - frontrear view, A -
angular view

For the purpose of detailed analysis of the performance
of the proposed approach, the classification performance is
evaluated using the receiver operating characteristic (ROC)
curve (see figure 9 below) that helps visualise performance,
in detail. In a ROC curve the True Positive Rate (sensitiv-
ity or recall) is plotted as a function of the False Positive
Rate (false alarm rate) for different cut-off points of a pa-
rameter.

. o
True Positive Rate = IR DE
False Positive Rate = %;

where, tp denotes the number of true positives (an in-
stance that is positive and classified as positive); tn denotes
the number of true negatives (an instance that is nega-
tive and classified as negative); fp denotes the number of
false positives (an instance that is negative and classified
as positive) and fn denotes the number of false negatives
(an instance that is positive and classified as negative).

According to [27], an ROC curve visualises the follow-

ing:

1. It shows the tradeoff between sensitivity and speci-
ficity (any increase in sensitivity will be accompanied
by a decrease in specificity).

2. The closer the curve follows the left-hand border and
then the top border of the ROC space, the more ac-
curate is the test.

3. The slope of the tangent line at a cutpoint gives the
likelihood ratio (LR) for that value of the test.

Further the accuracy of performance is defined as:

tp+tn
tp+tn+ fp+ fn

Accuracy is measured by the Area Under the ROC
Curve (AUC). An area of 1 represents a perfect test; an

Accuracy = (16)
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area of 0.5 represents a worthless test. A rough guide for
classifying the accuracy of a diagnostic test is the tradi-
tional academic point system [27]:

e 0.90-1 = excellent (A)
e 0.80-0.90 = good (B)
e 0.70-0.80 = fair (C)
e 0.60-0.70 = poor (D)
e 0.50-0.60 = fail (F)

In summary the ROC curve shows the ability of the
classifier to rank the positive instances relative to the neg-
ative instances. The table below shows the true, false pos-
itives including the AUC values on all datasets using the
RLH feature combination.

Given the above observations and facts, we plot the
ROC graphs of the proposed approach when tested with
the F/R datasets and angular datasets, in figures 9,10 and
11 below.

—#— HOG_Front/Rear
—#— Region_Fromt/Rear
#— RH_Front/Rear
LH_Front/Rear
——p— RLH_Front/Rear

—a— RL_Front/Rear

—— LBP_From/Rear

04 05 08 1

—+—HOG_Angie
—8—Region_Angie
x—RH_Angle

LH_Angi=

—=—RLH_&ngi=
—a—RL_Angie

—+—LBP_Ange

Figure 10: ROC curve of angular view datasets

—+— HOG_Combined
—8— Region_Combined
#— RH_Combined
LH_C ombined
== RLH_Combined
—s— RL_Combined

=t LBP_Combined

Figure 11: ROC curve of combined view datasets

The average AUC value for the classification of us-
ing the proposed feature combination on F/R and angular
datasets is 97%, which is greater than 90%. Therefore
the average performance (across the classification of vari-
ous vehicle types) of the algorithm can be concluded to be
excellent.

It is noted that each point on the ROC curve represents
a TPR/FPR pair, corresponding to a particular decision
threshold. The AUC is a measure of how well a parameter
can distinguish between groups. ROC curves can also be
used to compare performance of two or more experiments
(see figures 9,10 and 11).

For the purpose of detailed analysis, we present the F-
measure analysis of the classification performances in table
5. F-measure is a measure of an experiment’s accuracy. It
is the harmonic mean of precision and recall given as:

Fog. precision - recall

precision + recall (17)

Only the results when feature selection was used have
been tabulated. From the table 5, we see the impact fea-
ture combinations on the percentage accuracy values indi-
cated. It is clear that combining two or all three types of
features enables a more accurate overall performance.

A final observation is that the accuracy levels are better
when the training and testing are both done on footage
captured within a limited angle. When all data is combined
the accuracy drops. However this drop of accuracy is not
significant to rule out that the proposed approaches will
work regardless of the angle of approach of the vehicle.

Table 5: F-measure recognition percentages

Features Angulay Front/RearCombined Average
view view view value
HOG | 89% 94% 87.8% 90%
LBP 7% 90% 80% 82%
Region | 86% 93% 74% 84%
RH 93% 97% 84% 91%
RLH 97% 97% 91% 95%
RL 96% 100% 83% 93%
LH 95% 97% 92% 94.6%
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5. State of the art Comparison

In this section we present the comparison between the
proposed system and the other approaches that are found
in the state of the art.

An overall accuracy of 95% was recorded in classifica-
tion, which could be considered as a satisfactory outcome.
It is worth to noticing that two views were considered in
this experiment: F/R and angular views. Comparing our
results with the one reported by Ozkurt [12], we can see
from Table 6 that our system returned better accuracy
figures. The main drawback of this system is that experi-
ments was performed on two views only.

The most notable contribution of the proposed tech-
nique is the classification process, which is not restricted
to fixed view angle cameras. Powered by a combination
of local features that are scale and rotation invariant, our
system can theoretically detect vehicles and their types in
video footage captured from a wide range of angles. This
makes the proposed technique quite suitable to be applied
in real-world scenarios where the viewing angles of traf-
fic surveillance cameras usually change. Other techniques
have been reported might, based on their own specific data,
claim a higher accuracy rate than the proposed technique.
However, a closer look at these techniques reveals a number
of restrictions. For example, in [11], Kafai and Bhanu, the
algorithm is based on features extracted from rear view im-
ages of vehicles. Moreover, specific details such as number
plates and tail-lights must be visible in the image. Similar
drawbacks could also be found within the data collected in
Ma and Grimson [28] and in the successive experiments of
Ambardekar et al [29]. Despite reporting an almost per-
fect result in one experiment (with the PCA-DIVS based
algorithm), Ambardekar et al. admitted that their experi-
ments were performed under a number of constraints such
as, the input video must be captured from an overlook-
ing camera; orientation, angles and road-camera distance
must be pre-measured. These points clearly indicate that
the technique proposed within this paper is most suitable
to be directly implemented in a real-life scenario.

The comparison between different approaches and the
proposed approach is presented in the following table:

6. CONCLUSIONS

In this paper we have proposed a real-time vehicle type
detection and counting system that can be re-used, inde-
pendent of the direction of view. The system is based of
detecting a vehicle and using a combination of features
of Region, Local Binary Pattern and Histogram Oriented
Gradient, to identify the vehicle type. Further we show
that using a suitable feature selection approach both the
speed and the accuracy of the algorithms can be signifi-
cantly increased. Average accuracy figures reaching 95%
has been achieved on CCTV video footage captured via
a general purpose, non-calibrated camera on the side of a
motorway during a ten hour recording period.
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We are currently working on introducing a vehicle track-
ing algorithm so that the vehicle type can be recognised not
on a frame-by-frame basis but on a tracked object basis.
This allows opportunities to further increase the robustness
and the accuracy of the proposed system. More extensive
testing to evaluate the performance of the algorithm under
non-ideal illumination situations will also be discussed.
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Table 6: Comparison between approaches

Techniques Limitations

Method in [30] | Only detection, no classification. Fixed view (F/R). Roof, headlights, tail-lights details must be visible.

Method in [12] | Fixed view (Top). Manually cropped video frames.

[
[
Method in [11] | Fixed view (Rear). LP, tail-lights details must be visible.
Method in [3] | Only detection, no classification. Fixed view (F/R). Many assumptions and time consuming.

Method in [28] | Fixed view (overlooking); Angle and distant must be measured.

Method in [29] | Orientation, angles and road-camera distance must be pre-measured

Our approach | Experiments performed on two views only
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