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Abstract
The main purpose of this paper is to introduce a new method for gene

prediction in DNA sequences based on the period-3 property in exons.
First, the symbolic DNA sequences converted to digital signal by using
maximum homogeny estimation modeling method. Then, to reduce the
effect of background noise in the period-3 spectrum, we have used the
discrete wavelet transform (DWT) at four levels and apply it on the
input numerical strand. Finally, to extract the period-3 components in
smoothed sequence, we have used the minimum variance spectrum es-
timating technique. Using the proposed algorithm leads to increase the
speed of process and therefore to reduce the computational complexity.
The ability of detect small size exons in DNA sequences is another ad-
vantage of our algorithm. Performance of the proposed algorithm in exon
prediction is compared with several existing methods at the nucleotide
level using: (i) specificity vs. sensitivity; (ii) receiver operating curves
(ROC) curve; (iii) area under ROC curve. Simulation results show that
our algorithm increase the accuracy of exon detection relative to the
most common digital signal processing (DSP) tested methods for gene
prediction.
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1. INTRODUCTION

Deoxyribonucleic acid (DNA) is of the most impor-
tant chemical compounds in living cells, bacteria and some
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viruses [1]. It is composed of four types of different nu-
cleotides, namely adenine (A), cytosine (C), guanine (G)
and thymine (T) [2]. However, only some specific areas of
the DNA molecule which called as genes carry the coding
information for protein synthesis. In eukaryotic cells, the
DNA is divided into genes and inter-genic spaces. Genes
are further divided into exon and intron which is shown
in Figure1. Genes are responsible for protein synthesis;
therefore, they are called protein-coding regions because
they carry the necessary information for protein coding
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Figure 1: Exon/Intron regions for eukaryotic DNA.

[3, 4, 5]. Protein-coding regions exhibit a period-3 be-
havior due to the codon bias involved in the translation
process. This phenomenon caused background noise which
leads to more difficult of exon finding in DNA sequences
[6, 7]. Nowadays, there are many digital signal processing
(DSP)-based methods presented in literatures to identify
the protein coding regions in DNA sequences which are
based on Fourier spectral. In [8] Fourier transform is used
for this purpose. In this way, by choosing a fixed-length
window and sliding it on the numerical DNA sequences
and then applying a discrete Fourier transform (DFT) and
calculate the power of the resulted spectrum, we can deter-
mine the exonic regions. In our previous work [9] we used
an anti-notch filter (AN filter) with the central frequency of
2/3 in order to capture the background noise. In this work,
the DNA sequence is first passed through a notch filter and
then a sliding windowed DFT is applied on the filtered se-
quence. In [10] we proposed a windowless technique based
on the Z-curve to identify gene islands in total DNA se-
quence which called cumulative GC-Profile method. The
main characteristic of our proposed method is that the
resolution of it in displaying the genomic GC content is
high since no sliding window is used, but the computa-
tional complexity of this method is high. In [11] an appro-
priate method is proposed to predict the protein regions
by combining the DFT and continues wavelet transform
(CWT). CWT leads to reduce the high frequency noise
and therefore improve the accuracy of prediction. In [12]
authors proposed a new algorithm based on Fourier Trans-
form and using Bartlett window to suppress the non-exonic
regions. Authors in [13] used Time Domain algorithms to
determine the coding regions in DNA sequences. Adaptive
filters [14] are one the best tools for predictions task. In
[15] and [16] authors proposed two adaptive filtering ap-
proaches based on Kalman filter and least mean squares
(LMS) algorithm. However, the major problem with LMS
is that the convergence behavior of it is slow which leads
to high computational complexity in it. In [17] a paramet-
ric method estimation of spectrum based on autoregressive
model (ARM) is proposed. The ARM has the advantage
over the DFT that they work with smaller window sizes
and, thus, shorter sequences. In this paper, a new method
based on discrete wavelet transform (DWT) and the minu-
mum variance spectrum estimating technique is proposed

to determine the location of exons based on their period-3
properties. Using the proposed algorithm leads to improve
the prediction accuracy of coding regions, especially small
size of exons in DNA sequences. The rest of the paper
is organized as follows: In Section 2, DNA numerical rep-
resentation and maximum homogeny estimation modeling
method for mapping genomic sequence into digital values
is discussed. In Section 3, DWT is introduced to reduce
the noise in indicator sequence. The minumum variance
spectrum estimating technique which is used to extract
period-3 patterns is discussed in Section 4. The proposed
algorithm is described in section 5 as a flow graph. Re-
sults and discussion is explained in Section 6 using Gen-
bank database. Finally, conclusion is mentioned in Section
7.

2. NUMERICAL REPRESENTATION OF
DNA SEQUENCE

Converting the DNA sequences into digital signals [18,
19] provides the possibility to apply signal processing tools
in order to analysis of genomic data and reveals features of
chromosomes. The genomic signal approach has already
proven its potential in revealing large scale features of
DNA sequences maintained over distance of base pairs, in-
cluding both exon and intron zones, at the scale of whole
genomes or chromosomes [20, 21, 19]. In this paper, we
have used the maximum homogeny estimation modeling
method to convert the symbolic sequence of DNA to nu-
merical signals. In this method, it is assumed that each
symbol of DNA sequence is produced from a data source
with a given probability density function, and the series
D = [D1, D2, ...DN ] is produced through drawing symbols
from these data sources in a cycle. The number of sources
is equal to the number of hidden alternation in the se-
quence. Accordingly, maximum homogeny estimation in P
alternation is computed as:

MLE = argmax
P∈B

logP (W | MP , P ) (1)

where B = [1, ....N0] is searching area for the P (N0 <
N) parameter and W = [W1, D2, ...WN ] is a series of vec-
tors to represent D. Also, M is a matrix which its elements
indicate the probability density functions of data sources.
So that Mij represents the probability that the ith source
causes the jth symbol of S which Sϵ(A,C,G, T ) [22].

3. USING DWT TO REDUCE THE HIGH
FREQUENCY NOISE

In this paper, we use discrete wavelet transform and ap-
plied it on the input numerical sequence to eliminate the
high frequency noise and hence improve the accuracy of
exonic region identification. In DWT, the signal is passed
first through the high and low pass filters, then by down-
sampling the filtered signal, samples are divided into two

2
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Figure 2: Applying DWT to the input numerical sequence.
(a). Original signal (b). High frequency components of
level 4 DWT decomposition (detail signal). (c). Low fre-
quency components of level 3 DWT decomposition (ap-
proximation signal).

signals; high frequency samples (detail signals) and low fre-
quency one (approximation signals). The DNA numerical
signal, x[n], is passed first through the high pass filter, g[n],
then through the low pass filter, h[n]. So, we have:

shigh[k] =
∑
n

x[n].g[2k − n] (2)

slow[k] =
∑
n

x[n].h[2k − n] (3)

Figures 2 (a) to (c) show the approximation and de-
tail signal for the output spectrum of the gene sequence
F56F11.4. By removing the detail signals and considering
only the approximation signal, the extra frequencies are
eliminated and the output power spectrum is smoothed.
Hence, the noise effect is decreased which leads to improve
the accuracy of identification task.

4. THE MINIMUM VARIANCE

SPECTRUMESTIMATION TECHNIQUE

All the algorithms proposed for protein coding regions
detection are non-parametric techniques for power spec-
trum estimation of a random process. So their perfor-
mance based on short-term Fourier transform is limited
by the length of the input series. As a result, when the
input series is containing remarkable amounts of energy
within the frequency spectrum of lateral lobes, the leak-
age found in lateral lobes leads to distortion in the esti-
mated spectrum. The leakage in the spectrum makes sig-
nals with lower energy in the input series fade away. Thus,
designing an optimal filtering method is necessary, where
it provides facility of adaptation with the input data. In
this paper, minimum variance technique is used to esti-
mate signal spectrum. This technique is the adapted sam-
ple of maximum homogeny method, which was first used
by Capon to analyze power spectrum densities of multi-
dimensional arrays [23]. Minimum variance method is cre-
ated by minimizing output variance of a band-limited filter
so that it is set on the spectral content of input process in
the desired frequency (f0 ). In order to get the impulse

response of this filter, an inverse filter with 1 + p coeffi-
cients of a[0], a[1], ..., a[p] is considered. According to the
convolution relationship, filter output (y[n] ) towards input
series (x[n] ) is computed as Eq. (4):

y[n] =
P∑

k=0

a[k]x[n− k] = XT [n]a (4)

where (x[n] ) and a are two vectors with 1 + p dimensions
and defined as follows:

X[n] =


x[n]

x[n− 1]
.
.

x[n− p]

 a =


a[0]
a[1]
.
.

a[p]

 (5)

Output variance of the filter equals to:

ρ = E[| y[n] |2] = E[aHX∗[n]XT [n]a] (6)

= aHE[X∗[n]XT [n]]a = aHRPa

where Rp is estimated autocorrelation matrix with dimen-
sions of (p+ 1)× (p+ 1) and defined as follows:

Rp =


rxx[0] . . . r∗xx[p]

. . .

. . .

. . .
rxx[p] . . . rxx[0]

 (7)

Output variance achieved in Eq. (5) is similar to the vari-
ance of linear predictor filter, with the difference that the
coefficient[0] is selected arbitrarily to unitilize gain. The
coefficients of minimum variance filter must be selected in
such a way that in the desired frequency (f0 ), the fre-
quency response of the filter becomes unit, which means:

p∑
k=0

a[k]exp(−j2πf0kT ) = eH(f0)a = 1 (8)

which e(f0) is a vector with dimensions of 1 + p and is
defined as follows:

e(f) =


1

exp(j2πf)
.
.

exp(j2πf0T )

 (9)

Therefore, impulse response of the minimum variance filter
for an input series is achieved as Eq. (9):

aMV =
R−1

p e(f0)

eH(f0)R
−1
p e(f0)

(10)

Figure 3 shows the impulse response of minimum variance
spectrum estimation filter, selecting window with fixed length
of 351. As mentioned before, this filter is an adaptive fil-
ter such that its impulse response varies with the input
samples. As it is seen, frequency conjugate components in
4π/3 are eliminated.

3



CNSER IJCVSP, 6(1),(2016) 

 

 

Figure 3: The impulse response of minimum variance spec-
trum estimation filter.

5. PROPOSED ALGORITHM

Details of the proposed method are shown in Figure 4
as a flow graph.

- Numerical mapping of DNA sequence using maximum
homogeny estimation modeling method,

- Using DWT and applied it on the numerical sequence
to remove the high frequency noise.

- Choosing Bartlett window and sliding it on the filtered
sequence, and

- Using minimum variance spectrum estimating tech-
nique.  
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Figure 4: Flow graph of the proposed algorithm.

6. RESULTS AND DISCUSSION

To accurate comparison the different methods in iden-
tify the protein coding regions; the evaluation is done at

 

 

 

Figure 5: Nucleotide level measures of prediction accuracy.

nucleotide level. To determine the genomic regions by sig-
nal processing methods, some parameters are defined by
changing the threshold level at system output. In this sec-
tion, we introduce these parameters that listed as below:
Sensitivity and Specificity: These parameters can be de-
fined with the help of Figure 5, where true positive (TP)
is the number of coding nucleotides correctly predicted as
coding, false negative (FN) is the number of coding nu-
cleotides predicted as non-coding. Similarly, true negative
(TN) is the number of non-coding nucleotides correctly
predicted as non-coding, and false positive (FP) is the
number of non-coding nucleotides predicted as coding. By
definition of these four quantities, the parameters sensitiv-
ity (Sn), specificity (Sp) and precision (P) are defines as
[24]:

Sn =
TP

TP + FN
(11)

Sp =
TP

TP + FP
(12)

P =
TP + TN

TP + FP + TN + FN
(13)

Receiver Operating Characteristic (ROC) curves: The re-
ceiver operating characteristic (ROC) curves were devel-
oped in the 1950s as a tool for evaluating prediction tech-
niques based on their performance [25]. An ROC curve
explores the effects on TP and FP as the position of an
arbitrary decision threshold is varied. The ROC curve can
approximated using an exponential model as below [26]:

y = a(1− e[−β1
√
x+β2x]) (14)

which, parameters α , β1 and β2 can be determined by
minimizing the error function:

E(P ) =
n∑

i=1

[a− (1− e−[β1
√
xi+β2xi])− yi)]

2 (15)

where p = [α β1 β2]
T and xi, yj are points in the ROC

plane. The area under the ROC curve (AUC): This pa-
rameter is also a good indicator of the overall performance
of an exon-location technique. The greater of AUC leads
to the better performance of the tested algorithm [24].

In order to demonstrate the performance of the dis-
cussed methods, we have used the DNA sequence of gene
F56F11.4a (GenBank No. AF099922) on chromosome III
of Caenorhabditis elegans. C elegans is a free living ne-
matode, about 1mm in length, which lives in temperate
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soil environment. It has five distinct exons, relative to
nucleotide position 7021 according to the NCBI database.
These regions are 3156-3267, 4756-5085, 6342-6605, 7693-
7872 and 9483-9833 1. We have used three other gene
sequences named AF009962, AF019074.1 and AJ223321
for further assessments. AF009962 is the accession num-
ber for single exon which has one coding region at posi-
tion 3934-4581. The gene sequence AF019074.1 has the
length of 6350 which has three distinct exons, 3101-3187,
3761-4574, and 5832-6007. AJ223321.1 has only one cod-
ing region which its location is 1196-2764. We also have
utilized two other datasets which describe below: Dataset
HMR195: This dataset contains 195 genes of the human,
mouse and rat, was established by Rogic and his colleagues
in 2001 with purpose of evaluating different gene finding
programs in DNA sequences. It includes 43 single-exon and
152 multi-exon genes and its coding area density is 14%.
The maximum length of the sequences in the database is
1,383,720 bp and the number of sequences related to hu-
mans, mice and rats are 103, 82 and 10, respectively [24].
Dataset BG570: This dataset contains 570 multi-exon ver-
tebrate gene sequences and is established by Burset and
Guigo in 1996 to evaluate different programs designed for
prediction of protein coding regions in genomic sequences.
Each sequence in this database includes at least one in-
tron and two exons. The total number of base pairs in
this database is 2,892,149 bp containing 2,649 exons with
total lengths of 444,498 bp. In addition its coding area
density is 15.37% [26]. In this paper, to evaluate perfor-
mance of the proposed algorithm, DFT method [8] and
also AN-filter [9] are implemented. In addition to these
methods, results of two Asif [12] and AMDF [13] meth-
ods are given in tables to compare them with the proposed
algorithm. Figures 6 (a), (b) and (c) show the results of
DFT, AN-filter and the proposed algorithms in determi-
nation of protein encoding regions in the gene F56F11.4,
respectively. In DFT method, because of the accompani-
ment of noise with the main signal, estimation of protein
coding regions does not have high accuracy. AN-filter has
higher accuracy when compared to DFT, and non-protein
regions are almost removed in them. Also, this method de-
creases computational complexity in comparison to DFT.
In the proposed algorithm shown in Fig. 6 (c) the noise is
highly removed due to the use of DWT and gene regions
with small sizes (for example the first Exon in the gene
F56F11.4a) could be identified because of the use of mini-
mum variance spectrum estimation filter. In Figures (7) to
(12) results of applying DFT, AN-filter and our proposed
algorithm in identifying the coding regions on the gene se-
quences F56F11.4a, AF009962, AF019074.1 and AJ223321
are shown by choosing the worst and best window types
(Rectangular and Bartlett windows). Note that the length
of the windows is chosen 351 (bp) for all of these simu-
lations. Superiority of the proposed algorithm in deter-
mining the coding regions is clearly visible for both situ-

1http://www.ncbi.nlm.nih.gov/Genebank/index.html

ations. In Table 1, Sp and AC amounts are given for a
fixed amount of Sn in the proposed algorithm and other
algorithms in sequence of the gene F56F11.4a. As seen, the
proposed algorithm has the maximum amount of these two
parameters; So that Sp and AC amounts are 0.95 and 0.68,
respectively. Results of applying of the proposed algorithm
and other methods on a set of genes from BG570 database
is shown in Table 2. In order to apply the proposed algo-
rithm to the genes in this database, exons and introns with
length of 100bp or longer are extracted which includes 1768
exons and 1844 introns. As can be seen the proposed al-
gorithm has the least amount of FP. In case of Sn equal to
0.40, the number of incorrect nucleotides at the proposed
algorithm improves by the factor of 14.26 in comparison
to the best method, AN- filter. A similar superiority of
the proposed algorithm is shown in Table 3 which relates
to the HMR195 database. The value of AC of the pro-
posed algorithm for = 0.40 equals to 0.752 while its value
for the AN-filter is 0.324. To compare the computational
efficiencies of our proposed algorithm and other methods,
the average CPU times over 1000 runs of the techniques for
the four gene sequences, F56F11.4, AF009962, AF019074.1
and AJ223321.1, was computed. All of the implemented al-
gorithms were run on a PC with a 1.6 Ghz processor (Intel
(R) Pentium (R) M processor) and 2 GB of RAM. Table 4
summarizes results of the average CPU times. We observe
that our algorithm has improved the average CPU times
by the factor of 30.23, 37.77, 46.32 and 55.56 relative to
the next-best performing method, AN-filter in F56F11.4,
AF009962, AF019074.1 and AJ223321.1 gene sequences,
respectively.
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Figure 6: Exonic regions predicted on the gene sequence
F56F11.4a by applying: (a). DFT, (b). AN-Filter and (c).
Proposed Algorithm.
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(a) F56F11.4a
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(b) AF009962
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(c) AF019074.1
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(d) AJ223321

Figure 7: Identifying the coding regions in gene sequences
F56F11.4a, AF009962, AF019074.1 and AJ223321 by ap-
plying DFT method with the rectangular window size of
351 (bp).
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(b) AF009962
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(c) AF019074.1
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(d) AJ223321

Figure 8: Identifying the coding regions in gene sequences
F56F11.4a, AF009962, AF019074.1 and AJ223321 by ap-
plying AN-Filter method with the rectangular window size
of 351 (bp).
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(a) F56F11.4a
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(c) AF019074.1
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(d) AJ223321

Figure 9: Identifying the coding regions in gene sequences
F56F11.4a, AF009962, AF019074.1 and AJ223321 by ap-
plying proposed method with the rectangular window size
of 351 (bp).
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(a) F56F11.4a
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(b) AF009962
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(c) AF019074.1
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(d) AJ223321

Figure 10: Identifying the coding regions in gene sequences
F56F11.4a, AF009962, AF019074.1 and AJ223321 by ap-
plying DFT method with the bartlett window size of 351
(bp).
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(c) AF019074.1
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(d) AJ223321

Figure 11: Identifying the coding regions in gene sequences
F56F11.4a, AF009962, AF019074.1 and AJ223321 by ap-
plying AN-filter method with the bartlett window size of
351 (bp).
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Figure 12: Identifying the coding regions in gene sequences
F56F11.4a, AF009962, AF019074.1 and AJ223321 by ap-
plying proposed method with the bartlett window size of
351 (bp).
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Table 1: Comparison of quantitative results of the proposed algorithm and with other applied methods which were
mentioned, on sequence of the gene F56F11.4

Metod Sp AC
DFT 0.18 0.09
AN-filter 0.24 0.26
Asif 0.93 0.13
AMDF 0.21 0.20
TDP 0.50 0.54
Proposed 0.95 0.68

Table 2: Comparison of the quantitative results of the proposed algorithm with other methods applied on genes in
BG570 database (with Sn =0.40).

Metod AUC FP Sp AC
DFT 0.6540 764 0.433 0.183
AN-filter 0.6765 499 0.497 0.174
Proposed 0.9365 35 0.925 0.874

Table 3: . Comparison of the quantitative results of the proposed algorithm with other methods applied on genes in
HMR195 database (with Sn =0.40).

Metod AUC FP Sp AC
DFT 0.6782 1184 0.453 0.181
AN-filter 0.7615 562 0.574 0.324
Proposed 0.9656 96 0.895 0.752

Table 4: Average Computational Time computed for the different algorithms.

Gene Sequences
Sequence Length (bp) Dissimilarity measures

Proposed AN-filter DFT
F56F11.4 9833 22.8945 629.231 718.4017
AF009962 7422 17.2145 650.321 391.0609
AF019074.1 6350 12.5354 580.5987 282.0491
AJ223321.1 5321 9.3654 520.3694 193.2907
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7. CONCLUSIONS

Gene identification is a complicated problem, and the
detection of the period-3 patterns is a first step towards
gene and exon prediction. Due to the complex nature of
the gene identification problem, we usually need a more
powerful model that can effectively represent the charac-
teristics of protein-coding genes. Many DSP techniques
have been applied successfully for the identification task
but still improvement in this direction is needed. In this
paper, a fast model-independent algorithm is presented to
exon detection in DNA sequences. Firstly, we used max-
imum homogeny estimation modeling method to convert
the symbolic sequence into digital signal. Then, we used
discrete wavelet transform to reduce the correlation be-
tween the numerical data and therefore reduce the high
frequency noise. Finally, the minimum variance spectrum
estimating technique was applied to the filtered sequence
for the period-3 detection. Our proposed algorithm min-
imizes the number of nucleotides incorrectly predicted as
coding regions which leads to increase the. Also area under
the ROC curve is improved in our algorithm over the other
tested methods. High speed characteristic in our algorithm
is the major advantage which leads to increase the run pro-
cess in it. Combination of advanced DSP techniques with
the proposed algorithm can be used to identify the short
exon regions in DNA sequences with low complexity and
more efficiency which this issue is one of our goals in future
works.
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