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Abstract
In building panoramic images, the selection of appropriate homography plays
a crucial role in reducing the error and in registering the images accurately. In
this paper, we demonstrate a method for selecting the appropriate homogra-
phy for building the panoramic image based on information extracted from the
images. It is shown that using homographies from the appropriate subgroup,
the undesirable distortions can be reduced which improves the quality of the
panoramic image. We tested our method both on synthetic and real world im-
ages. We also discussed and compared several error metrics to evaluate the
accuracy of registration.
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1. INTRODUCTION

Image registration is a process of matching images based

on a geometric transformation of one or more images. It is a

prior step before image fusion. The quality of the final output

depends upon how well the images are aligned. Image mosaic-

ing is the technique which aligns the multiple images into one



CNSER IJCVSP, 2(1),(2013)

panoramic image which gives an extended field of view. This

technique is used in many applications such as creating terrain

maps from high altitude images. Image mosaicing has many

more new applications including map updation, virtual reality,

and medical imaging. In general, the underlying principle of 2D

image mosaicing is that of the homography. A homography is

an invertible mapping between two images [13]. It is a linear

transformation when the images coordinates are viewed as be-

ing in projective 2-space (so homography transformation H is a

3× 3 matrix). A homography is not only responsible for build-

ing panoramic images, but also its accuracy will decide the final

resolution of the image. Minimal errors in the homography will

lead to a seamless mosaic image.

The homography is computed based on an overlapping part

between the two images (the source and reference images). The

accuracy of the homography depends largely upon how well

feature points are extracted and matched, but in reality there

are several limitations. Several techniques such as SIFT (Scale

Invariant Feature Transform) and RANSAC (Random Sample

Consensus) eare commonly used to improve the point matching

process. After matching feature points, homography is com-

puted mathematically from the matched point data sets. There

are several methods for computing the homography, such as the

Newton-Raphson algorithm, Levenberg Marquardt algorithm,

and the Sampson approximation algorithm. However, the qual-

ity of the output of homography cannot exceed theoretical bound-

aries which depend on the errors in the matched data points and

errors in the images themselves (the images may not be truly

planar). Also, in some situations, feature points in one image

(source image) may lie on or beyond the frame in the other im-

age (reference image). This may be due to some feature points

lying on points at infinity which causes instability in the map-

ping. An algorithm was introduced for accurate mapping using

a technique called renormalization [6]. Although the renormal-

ization technique improves the mapping to certain extent, it does

not remove the distortion completely.

In the past, most of the work focussed on improving the post

estimation of the homography. In this paper, we demonstrate

that improvements can be made if an appropriate subgroup of

homographies is considered in the homography computation,

and we give a method (not involving a priori scene informa-

tion) for selecting this subgroup. The subgroup selection can

be thought of as extra scene information, but we wish to have

this determination made by the algorithm itself. The subgroups

of homographies (see Fig 1) which are relevant to our method

are the full group of projective homographies (8 degrees of

freedom in the matrix), their sub-groups of the affine transfor-

mations (6 degree of freedom), the similarity transformations

(4 degrees of freedom), and the Isometry trasformations (2 de-

grees of freedom). Other subgroups could certainly be consid-

ered as well. This approach of pre-selection of the homography

type will reduce the error and improve the final resolution of the

image. It is perhaps not obvious at first glance that this should

be the case, as all of the above mentioned homography types are

certainly projective homographies, and one might think at first

that treating them as such would give the best possible estimates

for the homography (perhaps at the expense of some computa-

tion time).

Early registration techniques were mainly intended for cre-

ating a seamless mosaic between overlapping im- ages [4], [7].

Several mosaicing methods are reviewed in [5]. High qual-

ity panoramic images can be created if the camera parameters

are known. However, complex methods are used to join the

overlapping images when the camera parameters are not avail-

able. In order to improve the homography produced by the Dis-

crete Linear Transform (DLT) algorithm, many strategies such

as the Levenberg-Marquart (LM) algorithm have been devel-

oped. In [10], the LM algorithm is shown to be better than
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the DLT algorithm when joining sequential images. There are

other optimization techniques such as the Sampson approxima-

tion [13] which also improve the homography. Even though

these methods improve the homography, they leave open the

possibility of improvement as they do not make use of prior

knowledge about the appropriate homography sub-class model.

In this paper, we demonstrate that selection of the appropriate

subgroup type will in fact lead to more accurate registration.

Thus, we can improve the quality of the final mosaic image by

incorporating subgroup selection in the process. Our objective

is to investigate the criteria for subgroup selection (”model se-

lection”), and show that this criteria can be obtained from the

image data itself.

Figure 1: Hierarchy of Transformations

1.1. Data Acquisition

We tested our algorithm on two kinds of data sets: sythetic

and real-world. The synthetic data was generated using Maple

CAS and was analyzed entirely without involving any manual

process. For the real-world data, we have taken a portion of the

New Orleans area captured using a digital camera (with fixed

focal length) from a helicopter, and of a scene in the Denton,

Texas area captured by an aerial fly-over. Some of the images

involved a significant oblique perspective, i.e., they involve sig-

nificant effects of non-planarity, so as to test the limitations of

the method.

2. Related work

Image registration methods are divided into two categories.

Feature based techniques are considered when local structures

are dominant as opposed to image intensities. In most cases,

feature based techniques are preferred over direct correlation

methods due to their more robust nature. In the past, registration

is limited to images that have undergone simple translations.

Later,Fast Fourier Transforms and cross correlation techniques

were introduced in [1] to determine spatial distances between

the images. In a different approach [12], edge correlation is in-

troduced. This technique assumes that edges are more invariant

to image effects than other features like texture, color and in-

tensity. An enhanced version of [12] was illustrated in [2]. In

this approach, phase correlation which gives rotation as an ad-

ditional parameter, is included. For joining images, the phase

component is used in [8]. This work is extended in [11] to

perform registration based on rotation, translation and scaling

differences.

All the above techniques, compute the homography based

on their individual approach which will not be suitable for other

subgroups of homographies. In addition, the above techniques

compute the error after estimating the homography. Later, a new

technique for improving the homography based on map registra-

tion is introduced in [9]. But, this technique still fails to work on

all subgroups of homographies. In contrast, the above problem

was solved in [6] by introducing the notion of stabilizing the

mosaicing by model selection. Even though this model solves

the post homography error problem using geometric AIC, it not

robust in all situations. In our approach, in addition to above

model, we introduce subjective and numerical analysis which
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will offset the problems of above techniques.

In [3], we demonstrated that the appropriate selection of the

homography type could reduce the registration error, but meth-

ods for homography model selrction were not presented. Here

we attempt to demonstrate that methods based on the images

alone, with no extra scene or camers information, can be used

to guide the subgroup selection.

3. HOMOGRAPHIES

In this section, we discuss basic facts about homographies

and their subgroups briefly before presenting our method. In our

approach, we are not assuming any apriori knowledge about the

intrinsic parameters of the camera, or of the nature of the ho-

mography. Recall that a homography is a geometric transfor-

mation between two images such that three points x1, x2, x3

lie on the same line if only if h(x1), h(x2), h(x3) do [13].

Such a map h can be represented as an invertible mapping from

projective 2-space (the projective plane) P2 to itself. It is thus

expressed as a non-singular 3 × 3 matrix H , which we identify

with the homography. So, we have,

x′ = H× x, (1)

where x and x′ are the coordinates of a point in the two images

viewed in projective space. The matrix H is only determied up

to a scale factor, and thus has 8 degrees of freedom.

We created two synthetic images, namely points x (first im-

age) and x′ (transformed second image), each consisting of 20

coordinate points, in the Maple environment. Let (xi, yi) (for

1 ≤ i ≤ 20) be the Euclidean point coordinates in the first

synthetic image and (x′
i, y

′
i) be the two coordinates in the sec-

ond image. We start our analysis with the random generation

of the points (xi, yi) and a randomly generated homography

H , which will serve to generate the theoretical “true homogra-

phies.” Let I1 denote the first image consisting of the 20 points

(xi, yi). We generate 21 theoretical homographies Ht, rang-

ing from purely affine to general projective, by fixing all the

entries of H except for the last row (that is, Ht = H except

for the last row), fixing Ht(3, 3) = 1, and letting the entries

Ht(3, 1), Ht(3, 2) vary linearly with t from values 0 to H(3, 1)

and H(3, 2) respectively. We thus have a sequence of homogra-

phies Ht, 0 ≤ t ≤ 20, which are closer to affine with smaller

values of t (recall that an affine transformation is represented by

an H with H(3, 1) = H(3, 2) = 0). Using each Ht, we com-

pute corresponding second images It2 by It2 = HtI1. We next

introduce random Gaussian noise into both the first image and

the set of second images (we used the same noise for all of the

second images, and a different noise for the first image). Let us

call the noisy images N1, N t
2. Starting from the noisy images

only, we then compute a homography which best matches these

images. This is done in two different ways: by assuming the ho-

mography lies in the subgroup of affine homographies, and by

treating it as a general projective map. Thus, for each value of

the parameter t we have an affine homography Ha
t , computed

according to the assumption that H is an affine mapping, and a

homography Hp
t computed with no assumptions on H .

To be specific, Ha
t , Hp

t are computed as follows. For the

projective case, following [13] chapter 4, we consider the equa-

tions Hxi × x′
i = 0, where xi =


xi

yi

1

 are the coordinates of

the ith point from the first image in projective coordinates, and

likewise for x′
i. Each pair of matched points (xi,x

′
i) gives 3

homogeneous equations with variables the entries of H . how-

ever, only two of the three equations are independent. So, we

get a 2n × 9 system, where n = 20 is the number of points

in the images. An optimal solution to this system in the least

squares sense is computed from the singular values decomposi-

tion (SVD) of the 2n × 9 coefficient matrix (the singular vec-

tor corresponding to the smallest singular value). For the affine
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case, we follow the same procedure, but we require that the vari-

ables corresponding to H(3, 1) and H(3, 2) are set equal to 0,

that is, we use only 7 variables to represent H . So, we get a

2n × 7 coefficient matrix for the system, for which we find an

optimal solution exactly as before.

4. Appropraite Model Selection

In this section, we discuss different ways of identifying the

appropriate homography model for building the panoramic im-

age. The proper selection of the homography model plays an

important role in reducing the error in the panoramic image.

We compare affine and projective model selection, though the

methods should generalize to other subgroups of homographies.

4.0.1. Model Selection using Visual Confirmation

The appropriate model can in some instances be determined

visually, up to a certain extent. For example, if the two images

only differ by translation, rotations, and uniform scaling in both

directions, then it is considered as a similarity transformation.

If the scales are different for the two axes, we could consider

the affine model. If there is a clear change of perspective, then

the general projective model could be used. Examples of these

kinds of transformations are shown in Figure 2.

There are cases, such as high altitude orthonormal views,

for which these may be considered safe assumptions. However,

using visual selection, it is not clear where the crossover point

in the model selection occurs, nor does this automate the proce-

dure. Our purpose is to investigate these points.

4.0.2. Model Selection using Homography as a Clue

As we discussed in section III, from the computed homo-

graphies H0, ...., H20, we can classify H into the appropriate

subgroup of homographies. If the values of h7 and h8 in the last

row of the computed homographies H1, . . . , H20 are zero, then

the homography is considered as purely affine. If h7 and h8

(a) (b)

(c) (d)

Figure 2: (a) Original, (b) Similarity, (c) Affine, (d) Projective

are far from zero then it is considered as a projective transfor-

mation. If the numerical values of h7 and h8 are close to zero,

then the transformation would naturally be considered as close

to affine, but still it is technically considered as projective. In

contrast, if the numerical values of h7 and h8 are close to 1 or

larger, then it surely would best be considered a general projec-

tive transformation. So, from the numerical values of h7 and h8

we could base our model selection. The exact cutoff point will

be investigated below.

The homography matrices (H0, . . . ,H20) corresponding to

the 21 samples are given below. The h7 and h8 values confirm

the above discussion, and the numerical values of h7 and h8

show that image is moving gradually from affine to projective.

H =


h1 h2 h3

h4 h5 h6

h7 h8 h9


Homography Output for 20 samples
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H0 =


0.70179871 0.13992647 0.099520405

0.97914866 0.23963466 0.865872898

0 0 1



H1 =


0.70179871 0.13992647 0.099520405

0.97914866 0.23963466 0.865872898

0.00109777 0.03109407 1


...

H10 =


0.70179871 0.13992647380 0.099520405

0.97914866 0.23963466 0.865872898

0.01097770 0.03109407 1


...

H19 =


0.70179871 0.13992647 0.099520405

0.97914866 0.23963466 0.865872898

0.02085767 0.59078744 1



H20 =


0.70179871 0.13992647 0.099520405

0.97914866 0.23963466 0.865872898

0.02195544 0.62188151 1


4.0.3. Model Selection using Error as Clue

It is known [13] that when H is purely affine, the algebraic

error and geometric errors are equal (see [13] for the definitions

of these errors). As the transformations move away from affine,

we would expect that the difference between the algebraic and

projective erors to increase. Thus, we could use the difference

δ = |Ealg − Egeom| to guide the model selection, where Ealg,

Egeom are the algebraic and geometric errors respectively. Since

these errors are commonly computed anyway, this could be a

cost-free parameter for model selection. Again, we investigate

the selection criteria below.

5. SELECTION of APPROPRIATE ERROR MET-

RIC

The computation of image mosaicing using appropriate ho-

mographies will lead to seamless and accurate mosaicing. How-

ever, homography selection is a preprocessing step for creating

panoramic image. Once the homography is computed, the se-

lection of appropriate error metric is also important during post

processing. In the following, we describe four different metrics

for computing the error after image registration. In our work,

we used geometric error metric due to its stability and invari-

ance under Euclidean transformation.

5.1. Mean Square Error

Mean square error (MSE) is a function of pixel intensity dif-

ference on the common overlap area of the two images. Let I ′1

and I ′2 be the warped I1 and I2 images and let A(i, j) represent

their average value, then the mean square error (MSE) metric is

defined as:

MSE =
∑

i,j∈I′
1∩I′

2

(A(i, j)− I ′1(i, j))
2 + (A(i, j)− I ′2(i, j))

2

(2)

where I1′(i, j) represents the intensity value at the point

(i, j) of the image I1′, and I2′(i, j) represents the intensity

value at the point (i, j) of the image I2′.

This is a straight-forward metric and is sensitive to image

brightness.

5.2. Algebraic Error

To compute the algebraic error (AE) one first computes a set

of point correspondences between the two images. This is done

using the SIFT and RANSAC algorithms. The point correspon-

dences are denoted as xi ↔ x′
i. Let H denotes the homography

which is joining two images. Each point correspondence will
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generate a partial error vector εi = ||x′
i×Hxi||. AE is the sum

of these partial errors [4]:

AE = ||ε||2 = ||x′
i ×Hxi||2 (3)

The algebraic error is faster to compute but the quantity

which is minimized is not geometrically or statistically mean-

ingful.

5.3. Geometric Error

This is an error function based on the sum of the geomet-

ric distances (that is, Euclidean or l2 distance) between Xi and

X̂i and between X ′
i and X̂i

′
= HX̂i

′
in the image. Here is an

estimated set of true coordinates which are minimized over in

computing the geometric error (GE). This is a non-linear min-

imization problem which is handled by algorithms such as the

LM algorithm. The vector can be used as an initial seed for the

LM algorithm. Thus, we may express GE as:

GE = d(Xi, X̂i) + d(X ′
i, X̂i

′
), (4)

where d(Xi, X̂i) is the Euclidean distance between the vec-

tors Xi and X̂i and likewise for the second term. Thus, the

geometric error reduces the difference between measured and

estimated image coordinates.

The geometric error is much more computationally inten-

sive than the algebraic error. However, the geometric error is

sometimes preferred for the following reasons: (a) the quantity

being minimized in (4) has a meaning, (b) solutions based on

this error are more stable, and (c) the solution is invariant under

Euclidean transformation.

5.4. Watershed Error

The idea behind watershed error metric is the watershed seg-

mentation algorithm [13] which is based on image visualization

in three dimensions consisting of two spatial coordinates and

gray level. The algorithm results in a finite number of image

segments. In order to address the problem of over-segmentation,

the concept of markers [12, 13] is used in watershed segmenta-

tion. This technique is applied to the overlapping area between

I1 and I2. Then, the number of segments obtained in I1 and

I2 are calculated and their total absolute difference is used to

estimate the error between the two registered images.

6. EXPERIMENTAL RESULTS - SYNTHETIC

We generated an image I1 consisting of 20 random points

and a sequence H0, . . . , H20 of homographies ranging from purely

affine (t = 0) to general projective (t = 20). We applied these

transformations to I1 to get I02 , . . . , I
20
2 . We then introduced

random Gaussian noise (with standard deviation 0.01) into these

images to get N1 and N0
2 , . . . , N

20
2 . Using the SVD method de-

scribed above we then compute homographies H0
a , .., H

20
a and

H0
p , .., H

20
p using the affine and projective models respectively.

For each of these we computed the error of the homography by

comparing with the true theoretical value Ht (we took ℓ1 dis-

tance to Ht).

The results for one run of the experiment are shown in Fig-

ure 2 below. In this graph, the x-axis represents the value of t,

ranging from t = 0 (affine) to t = 20 (projective). The blue line

represents the value of δ, the difference between the algebraic

and geometric errors as described above. The red lines represent

the errors for the homographies Ht
a and Ht

p computed using the

affine and projective models (the affine error is the curve which

starts out smaller).

As we see, the affine model performs better than the pro-

jective model for smaller values of t, but for t ≈ 2
20 = 10%

away from affine to projective the projective model begins to do

better. We have done this experiment with several runs of the

randomly generated object, with similar results.
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Figure 3: Results for synthetic model

7. EXPERIMENTAL RESULTS - REAL WORLD

We next ran the test on real-word images using the two dif-

ferent data sets mentioned previously. The camera images used

for the experiment are shown below in Figure 4 and Figure 5.

The images from Figure 4 represent a non-affine transforma-

tion. For this registration, it would seem best to use a general

projective transformation. The images from Figure 5, on the

other hand, represent an affine transformation. For both sets of

images we computed the homography H assuming it represents

an affine transformation, and then computed H assuming it is

a general projective transformation. The homography register-

ing the two images was computed using SIFT and RANSAC to

determine corresponding points followed by the DLT method to

compute the homography H (for both the affine and projective

cases). The results are shown in Table 1.

7.1. Projective Transformation under Affine and Projective Ho-

mographies

From Figure 4(a) and Figure 4(b) it is clear there is a signifi-

cant angle deviation between the perspectives of the two images.

Thus, one would expect less error for the projective homography

as opposed to the affine homography. The results below confirm

that the projectively computed homography has less registration

error that that of the affinely computed one.

(a) (b)

(c)

Figure 4: Real-World Images: (a) First camera image, (b) Second camera

image,(c) Final Mosaic (Projective transformation)

7.2. Affine Transformation under Affine and Projective Homo-

graphies

From Figure 4 it is evident that the transformation between

the two images is now essentially affine. Since the camera

view in both cases is orthogonal and at at sufficiently large alti-

tude compared to the objects in the scene, the transformation is

affine. Of course, affine transformations are also projective, but

by computing the homography under the assumption of affine-

ness, there is less possibility for error in the computation of the

homography (i.e., there are fewer extraneous degrees of free-

dom). The results are shown also in Table 1. As the results

show, the error E(A) for the affine homography is somewhat

less than that for the error E(P ) for the projective homography.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated a method for selecting ap-

propriate homography transformation which will reduce the er-

ror and improve the resolution of the image. We have demon-

strated that such a selection improves the registration accuracy

36



CNSER Int. J. Computer Vision Signal Process.

(a) (b)

(c)

Figure 5: (a) First camera image, (b) Second Camera,(c) Final Mosaic (Affine

Transformation)

Table 1: Error Results for all cases: Affine Transformation (Aff Tr) and Projec-

tive Transformation (Pro Tr) under Affine and Projective Homography

Affine H (E(A)) Projective H (E(P))

Pro Tr (Fig 2) 20480 19370

Time (sec) 23.7 23.84

Aff Tr (Fig 3) 2906.7 2916.0

Time (sec) 3.2 3.2

and the quality of panoramic mosaic. By selecting the appro-

priate model for the homography subgroup, undesirable error

effects can be removed. Our method is general and it can be

applied to a wide range of computer vision applications for im-

proving accuracy and avoiding computational instability. We

also discussed and compared several error metrics to evaluate

the registration accuracy. Our experiments suggest that geomet-

ric error captures the registration accuracy better than others.
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