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Abstract

This paper formulates the automation of dolphin whistle track estimation
process as a Multiple Target Tracking (MTT) problem using Random Fi-
nite Set (RFS) approach. It focuses on achieving possible automation
in dolphin whistle tracking using the Gaussian Mixture Probability Hy-
pothesis Density (GM-PHD) �lter. Acoustic recordings of three di�erent
dolphin species have been considered. Simulation results corroborate
that automation in dolphin whistle tracking has been achieved. The
GM-PHD �lter has been able to produce reliable estimate of whistle fre-
quencies in the presence of multiple whistles, spontaneous death/birth
of whistles and multiple whistles crossing each other.
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1. INTRODUCTION

Passive Acoustics Monitoring (PAM) technique is widely
used in detection and species classi�cation of dolphins.
This allows advancement of general knowledge of dolphin
species identi�cation and supports conservation and miti-
gation e�orts [1]. Acoustic techniques are complementary
to visual detection and classi�cation of dolphin species [2].
Dolphins have a range of vocalization capabilities and they
use them for di�erent purposes [3]. Their impressive vo-
calization capabilities can be categorized into three classes
(i) broadband short duration clicks, (ii) broadband pulsed
sounds (iii) continuous narrow band frequency modulated
whistles. Dolphin whistles have been shown to contain
species speci�c information [4]. This fact led to the use of
whistle tracks extracted from hydrophone measurements
in dolphin species classi�cation algorithms. Most of the
methods of automation in whistle track are mainly based
on spectrogram techniques [5]. A completely di�erent ap-
proach can be proposed based on the Random Finite Set
(RFS) formulation. The RFS [6] approach is an emerg-
ing and promising technique in the �eld of Multiple Target
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Tracking (MTT). Mahler proposed a natural, elegant and
rigorous Bayesian framework [7] based on the RFS for the
theory of MT �ltering. Since then a number of e�cient and
computationally tractable approximations to MT Bayes �l-
ter have been developed.
One such �lter is called the Probability Hypothesis Density
(PHD) �lter [8], [9], [10] which jointly estimates the state
and the number of targets from a set of noisy measure-
ments. But the recursion in PHD �lter requires solving
multi-dimensional integrals that do not, in general, have
closed-form solutions [11]. When the closed form solution
does exist, the Gaussian-Mixture PHD (GM-PHD) �lter
provides it [12].
The purpose of this article is to automate the whistle track
extraction process using the GM-PHD �lter.

2. DIFFICULTIES IN DOLPHIN WHIS-

TLE FREQUENCY TRACKING

Performance of the species identi�cation algorithms re-
lies on the accuracy of the whistle track estimation pro-
cess. The challenges in tracking the frequency contents
of dolphin whistle can be attributed to: (i) death/birth
of frequency tracks which means that number of whistles
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is unknown and generally varies over time (ii) presence of
large amount of background noise in the recorded signal
(iii) presence of multiple whistles cross each other. Based
on challenges mentioned in (i) and (iii), estimation and
tracking dolphin whistle can be regarded as MTT prob-
lem. In this work the potential of the RFS approach to
tackle these challenges has been investigated.

3. A SURVEY ONAUTOMATION INWHIS-

TLE TRACKDETECTIONMETHODS

A semi-automated whistle contour extraction method
has been proposed which works if the start and end points
are known as a-priori and the SNR of acoustic recording is
very high [13]. A noise removal method to facilitate con-
tour extraction in natural waters has been proposed [14]
where dolphin echolocation clicks are removed by the se-
quential application of a vertical edge suppression �lter and
an exponential smoothing �lter. The start and end points
of whistles are identi�ed by drops in local SNR. A di�erent
approach [15] to denoising has been proposed which com-
bines the outputs of four di�erent two-dimensional �lters
applied to the signal spectrogram in order to reduce the
noise level. This method is based on the assumption that
dolphin whistles are smooth curves without sudden jumps
in frequency. This method can only extract a single whis-
tle at each time, so it is not appropriate for tracking mul-
tiple whistles. Another approach to automate detection
and frequency estimation of dolphin whistles can be found
in [16]. The method presented there is based on Adaptive
Notch Filters (ANFs) and has been applied to bottlenose
dolphin whistle tracking. Another fully automated system
for whistle tracking, Real-time Odontocete Call Classi�-
cation Algorithm (ROCCA), has been developed to allow
real-time acoustic species identi�cation [2]. ROCCA auto-
matically extracts the whistle contour from the wav �le by
stepping through the �le one FFT window at a time. The
fundamental frequency of the whistle contour is selected
based on the peak frequency in each window.
RFS can be used to formulate multiple dolphin whistle
track estimation. The potential of the RFS formulation in
automation of whistle tracking from the raw hydrophone
measurements has been investigated here.

4. THE GM-PHD FILTER IN WHISTLE

TRACKING

4.1. THE PROBABILITY HYPOTHESIS DENSITY

The PHD function ν (·) is the �rst order moment of the
target posterior density function. In the context of MTT,
the position and the number local maxima of the posterior
density function represent the probable target position and
number. Hence PHD function can be used to generate
estimates of the target positions and number [17].

4.2. THE GM-PHD FILTER RECURSION

The GM-PHD �lter approximates the target posterior
density as a Gaussian Mixture Density function. It propa-
gates an intensity using the PHD recursion. The recursion
consists of prediction and update steps and forms the ba-
sis of a general MTT algorithm, called the GM-PHD �lter
[12]. During prediction step, the GM-PHD �lter uses the
system model to predict mean and covariance of the Gaus-
sian Mixture. Predicted mean and covariance are updated
using the likelihood function once the measurements are
available. This update step requires a measurement model
specifying the likelihood function. The system and mea-
surement model de�ne the state space model for the �lter-
ing problem under consideration. The recursion in GM-
PHD �lter causes the number of Gaussian components re-
sulting from the recursion step to increase without bound.
Hence at the end of each recursion pruning and merging
operations is performed. Pruning removes Gaussian terms
of low weights and keeps a certain number of terms of the
strongest weights. If the distance between the Gaussian
components are below a certain threshold, they are merged
into a single Gaussian density.

4.3. DYNAMICAL MODEL FOR DOLPHIN WHISTLE

TRACKING

In MTT context, di�erent dolphin whistles represent
di�erent targets. The state of the MTT in this essence
consists of the values of frequencies along with other pa-
rameters like chirp rate and possibly higher derivatives of
frequency. In this work state xk at time step k consists of
frequency f and chirp rate α:

xk = [f α]
T

(1)

The chirp rate α de�nes the time rate of change of
whistle frequency and has the unit Hz/s. A linear Gaus-
sian discrete state space model is used for dolphin whistle
tracking:

xk =

[
1 T
0 1

]
xk−1 + vk (2)

where vk is a zero mean Gaussian noise with a diagonal
covariance matrix, so that system noise of the frequency
and sweep rate are uncorrelated with di�erent variances i.e.
Σv, fs is the sampling frequency related with sampling pe-
riod T = 1

fs
.The state transition density fk|k−1(xk|xk−1)

is N (xk;mfk|k−1
, Σfk|k−1

) where mfk|k−1
= 01×2 and

Σfk|k−1
=

[
σ2
f 0

0 σ2
α

]
.

Only frequency measurements are available, and the
measurement model is:

zk = Hxk + wk (3)

where the measurement matrix H is H = [1 0] and wk
is zero mean Gaussian noise with covariance Σw. Hence the
likelihood function L(zk|xk) is a Gaussian densityN (x;mL,ΣL)
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where mL = 01×1and ΣL = Σw. The reason behind choos-
ing this model is that such model has been used for tracking
a single whistle track using Particle �lter approach in [18]
and results obtained were impressive. A di�erent model
involving next higher order derivative to chirp rate in the
state matrix, has been used in [15]. Such approach used
the Kalman �lter (KF) to track the dolphin whistle. But
the RFS approach is a much more re�ned approach than
the classical KF and has the potential to produce accurate
state estimates using only the frequency and the chirp rate.

4.4. MODEL FOR SPONTANEOUS BIRTH OF WHIS-

TLE FREQUENCY

The spontaneous birth of whistle frequency components
can appear in the frequency range of 2 kHz− 30 kHz [2].
The probability of birth of the track is high in the vicinity
of the measurements [19], [20]. Hence the birth of tracks
is modelled with a Poisson RFS whose intensity γk is a
Gaussian mixture density:

γk =
1

|Zk|
∑
z∈Zk

N (x; [z, 0],Σv) (4)

The weights of the individual Gaussian components in this
mixture density is chosen to be 1

|Zk| . The spreading of each

component in the mixture is controlled by the covariance
Σv of state transition density.

4.5. MEASUREMENT GENERATION PROCESS

Implementation of the GM-PHD �lter requires a set of
measurements at discrete instants of time for joint esti-
mation of the state and the target number. These mea-
surements are generated from raw audio data from hy-
drophone using whistle contour detection based on a mod-
i�ed spectrogram [21]. The aims of the modi�cations are
two-fold. First aim is to reduce the e�ect of echoloca-
tion clicks which are commonly present in recordings of
dolphin whistles. The second process is a normalization
to equalize the signal with respect to the ambient back-
ground noise. Frequency measurements for all three dol-
phin species namely bottlenose dolphin (Tursiops trun-

cates), common dolphin (Delphinus delphis) and striped
dolphin (Stenella coeruleoalba) have been generated using
this modi�ed spectrogram technique.

4.6. GM-PHD FILTER INITIALIZATION

The GM-PHD �lter was initialized by considering the
initial number of whistle frequencies as a random value.
Then for each of these frequency components, a Gaussian
component is constructed whose mean is distributed uni-
formly over the range 2 kHz-30 kHz [2]. This is because
fundamental frequency of most whistles ranges from 2 to 30
kHz. The covariance matrix for each of each of the Gaus-

sian components is chosen to be Σv = diag

([
σ2
f σ

2
α

]T)
where σf the standard deviation of frequency measurement

noise and σα is the standard deviation of chirp rate noise.
Experimentally, the best possible values for σf and σα are
chosen to be 10 and 100 respectively. In essence initializa-
tion of the GM-PHD �lter is the construction of a Gaussian
mixture density made up with these individual Gaussian
components. Target spawning is not relevant in whistle
tracking and hence not considered.

4.7. SELECTION OF OTHER SIMULATION PARAM-

ETERS

The clutter intensity κk is assumed to be independent
of time, i.e. κk=κ. This is because the GM-PHD �lter
recursions are derived under such an assumption [12]. It
is assumed that the measurement are generated using the
modi�ed spectrogram technique contains on the average
r = 5 clutters which are uniformly distributed over the
range of 2 kHz- 30 kHz and hence κ= 5

28000 . This produces
best tracking performance in this application as shown in
Fig.1-(a). The lowering of r adversary a�ect the GM-PHD
�lter output by including more clutter as illustrated in
Fig.1-(b). If r is increased then �lter starts to miss de-
tection on tracks as in Fig.1-(c) and Fig.1-(d). A small
value of wTh causes the �lter to consider Gaussian compo-
nents with weak weights in the mixture density as outputs
and this results in a more cluttered �lter state estimate.
Excessive large value for wTh causes the �lter to discard
many Gaussian peaks that represents actual whistle track.
This e�ect of wTh on GM-PHD �lter state estimation is
shown in Fig.2 (a)-(d). It is evident from these results
that wTh=0.5 produces best tracking performance.
The GM-PHD recursion is derived assuming certain condi-
tions are met [12]. One such assumption is that the target
survival probability,pS and the target detection probabil-
ity, pD are state independent. Hence the values of pS and
pD are chosen to be 0.99 and 0.95 respectively in this ap-
plication. With these values, the GM-PHD �lter tracked
all three tracks as illustrated in Fig.3-(a). Lowering values
of pS and pDdeteriorates the �lter performance, i.e. the
�lter missed potential whistle tracks as in Fig.3-(b). The
maximum number of Gaussian components Jmax at each
time step has been limited to 100 by using pruning method.
The threshold for pruning, U and the truncation thresh-
old, Tr have been chosen to be 4 and 1×10−5 respectively.
Table-1 summarizes the values used for di�erent simulation
parameters in the GM-PHD �lter.

5. SIMULATION RESULTS FOR WHIS-

TLE TRACKINGUSINGGM-PHD FIL-

TER

The GM-PHD �lter produces the whistle frequency es-
timates based on the measurements generated from the
hydrophone audio recording using modi�ed spectrogram
technique. The output of the GM-PHD �lter for Tursiops
truncates is superimposed on the spectrogram in Fig.4. For
Delphinus delphis and Stenella coeruleoalba, the GM-PHD
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Figure 1: Estimated whistle tracks from the GM-PHD �lter superim-
posed on spectrogram for Tursiops truncates for: (a) r=5, (b) r=2
(c) r=10, (d) r=15.

Figure 2: Estimated whistle tracks from the GM-PHD �lter superim-
posed on spectrogram for Tursiops truncates for: (a) wTh=0.2, (b)
wTh=0.5 (c) wTh=0.7, (d) wTh=0.9.

Figure 3: Estimated whistle tracks from the GM-PHD �lter super-
imposed on spectrogram for Tursiops truncates for: (a) pS=0.99 and
pD=0.95, (b) pS=0.55 and pD=0.50.

Figure 4: Estimated whistle tracks from the GM-PHD �lter super-
imposed on spectrogram for Tursiops truncates.

Figure 5: Estimated whistle tracks from the GM-PHD �lter super-
imposed on measurements for Delphinus delphis.

Table 1: Summary of Simulation Parameters for the GM-PHD
Filter in Dolphin Whistle Tracking.

Simulation Parameter Parameter
Speci�cation

No. of Gaussian |Zk|
components for spontaneous
birth, Jγ,k
Average number 5
of clutter point per scan, r

Standard Deviation of 10
Frequency Measurement, σf
Standard Deviation 100
of Sweep Rate Noise, σα
Covariance matrix for diag

([
σ2
f σ

2
α

)]
system noise, Σv
Initial Probability f ∼ U [2kHz,30kHz]
Distribution for frequency, f

Initial Probability α ∼ U [8kHz,60kHz]
Distribution for sweep
rate, α

Target Survival 0.99
Probability, pS
Target Detection 0.95
Probability, pD
Threshold for pruning, U 4

Maximum number of 100
Gaussian Components
allowed, Jmax
Truncation threshold, Tr 1× 10−5

Intensity of Poisson 5
28000

RFS for Spontaneous birth, κ

Weight threshold, wTh 0.5

Sampling period, T 1 sec

Figure 6: Estimated whistle tracks from the GM-PHD �lter super-
imposed on measurements for Stenella coeruleoalba.

Figure 7: Estimated whistle tracks from the GM-PHD �lter super-
imposed on measurements for Delphinus delphis expanded to show
300 time scan.
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Figure 8: Estimated whistle tracks from the GM-PHD �lter superim-
posed on measurements for Stenella coeruleoalba expanded to show
1000 time scan.

�lter outputs are superimposed on the measurements in
Fig.5 and Fig.6. For better pictorial representation, the
GM-PHD �lter outputs for Delphinus delphis (over 300
time scan) and Stenella coeruleoalba (over 1000 time scan)
have been shown in Fig.7 and Fig.8 respectively. For all
three species the simulation parameters, as speci�ed in
Table-1, are kept unchanged.

6. DISCUSSION ON RESULTS

Quantitative analysis of the whistle track estimation ac-
curacy is not possible since there is no ground truth type
track for the dolphin whistles. Ground truth tracks exist
only in synthetic environment. Hence visual inspection of
estimated tracks is used in dolphin whistle tracking com-
munity. Generally the spectrogram of the raw data, which
consists of tracks and huge number of clutters, is visually
inspected. This gives an idea about the possible whistle
track positions and number. Now the goal of the GM-PHD
�lter is to produce track estimates on the possible tracks
by discarding the clutters in the measurement. This has
been achieved for bottlenose dolphin by adjusting the pa-
rameters of the GM-PHD �lter as shown in Fig.1 to Fig.3.
This automatic extraction of dolphin whistle tracks form
the acoustic measurement is challenging due to di�erent
factors, as mentioned in Section 2, such as the presence of
multiple whistles, multiple whistles crossing each other and
number of whistles is varying over time. A close examina-
tion on the simulation results presented in Fig.4 to Fig.8
reveals the fact that the GM-PHD �lter has successfully
tracked multiple dolphin whistles from a set of noisy mea-
surements for all three di�erent dolphin species. The GM-
PHD �lter has tracked multiple whistles even when they
cross each other as depicted in Fig.7 and Fig.8. At each
time step the �lter accurately calculated the expected num-
ber of whistles by calculating the number of local peaks in
the Gaussian mixture target density and hence it can cope
up with the time varying number of whistles. This allows
the �lter to produce correct number of estimates that will
coincide with probable tracks and not with clutter. It also
ensures that the tracks are automatically initiated and ter-
minated as shown in Fig.7 and Fig.8. These results suggest
that the automation in dolphin whistle tracking has been
achieved using the GM-PHD �lter.

7. Conclusions

This work has investigated the possibility of dolphin
whistle track automation in the context MTT framework
based on RFS. It has been demonstrated that satisfactory
track estimates can be produced automatically using the
GM-PHD �lter. Simulation results suggest that the GM-
PHD �lter has successfully produced reliable track esti-
mates in the presence of multiple whistles, spontaneous
death/birth of whistles and multiple whistles crossing each
other. In future these accurate track estimates produced
by the GM-PHD �lter can be combined with di�erent dol-
phin species identi�cation algorithms to build a complete
system. The complete system will identify and classify dif-
ferent dolphin species by processing raw acoustic record-
ings obtained from hydrophones. Hence a complete dol-
phin species identi�cation system based on PAM can be
realized.
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